DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

IMR RE-EVALUATION

I-75/SR 93 AT SR 951/COLLIER BOULEVARD

Financial Project No.: 425843-2-52-01, 425843-2-56-01, 425843-56-02

Prepared for: Florida Department of Transportation – District 1

FDOT Project Manager: Joshua Jester, P.E.

Financial Project No.: 425843-2-52-01, 425843-2-56-01, 425843-56-02

Interchange Modification Report (IMR) Re-evaluation

(FINAL)

Prepared for:

Florida Department of Transportation, District One

Joshua Jester, P.E. FDOT District Interchange Review Coordinator (DIRC)

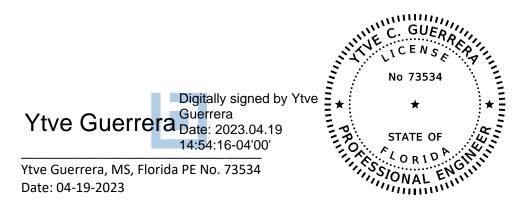
April 2023

Florida Department of Transportation Interchange Access Request for I-75 and SR 951/Collier Boulevard Re-evaluation

Interchange Modification Report Determination of Safety, Operational, and Engineering Acceptability

Acceptance of this document indicates successful completion of the review and the Interchange Access Request is considered acceptable for safety, operations, and engineering. Approval is contingent upon compliance with applicable Federal requirements, specifically the National Environmental Policy Act (NEPA) or Department Project Development and Environment (PD&E) Procedures. Completion of NEPA/PD&E process is considered acceptance of the general project and concepts described in the environmental document.

Requestor –	bocusigned by: kati Shurrard	04/20/2023 9:09 AM EDT
	Kati C. Shanran d;ଅୟ):CPM Corridors Program Engineer, District One	Date
	DocuSigned by:	
Interchange Review	Joshna Jester	04/20/2023 9:10 AM EDT
Coordinator	Joshua A. Jester P.E.	Date
	District Interchange Review Coordinator, District One	
Systems Management	June Bourson	05/01/2023 3:26 PM EDT
Administrator	Jenna Bowman, PE	Date
	Systems Implementation Office-Central Office	
	Docusigned by: Data Huytada	05/01/2023 3:29 PM EDT
FDOT Chief Engineer	Danifertage/ap/E.	Date
(if applicable)	FDOT Chief Engineer	


PROFESSIONAL ENGINEER'S CERTIFICATION

I, Ytve Guerrera, P.E., certify that I currently hold an active Professional Enginee's License in the State of Florida and I am competent throuh ecucation and experience to provide engineering services in civil and traffic engineering disciplines contained in this report. I further certify that this report was prepared by me or under my responsible charge as deifned in Chapter 61G15-18.0001 F.A.C. and that all statements, conclusions, and recommendations made herein are true and correct to the best of my knowledge and ability.

Project Description: I-75/SR 93 at SR 951/Collier Boulevard Interchange – Interchange Modification Report (IMR)

Location: Collier Coounty, Flrorida

FPID No.: 425843-2-52-01, 425843-2-56-01, 425843-56-02

This item has been digitally signed and sealed by Ytve C. Guerrera on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

The official record of this document is the electronic file signed and sealed under Rule 61G15-23.003 F.A.C.

SYSTEMS IMPLEMENTATION OFFICE QUALITY CONTROL CERTIFICATION FOR INTERCHANGE ACCESS REQUEST SUBMITTAL

Submital Date:

FM Number: <u>425843-2-52-01, 425843-2-56-01, 425843-56-02</u>

Project Title: FDOT D1 I-75 at SR 951 Interchange – Interchange Modification Report (IMR) Re-evaluation

Dsitrict: One						
Requestor: Kati C. Sł	nerrard, PE, (СРМ	Phone	:: (863) 519-25	590	
District IRC: Joshua A	A. Jester, P.E		Phone	: (863) 519-2	251	
Document Type	🗆 IJR	⊠ IMR	🗆 IOAR		⊠ OTHER	<u>Re-evaluation</u>

Status of Document:

Quality Control (QC) Statement

This document has been prepared following FDOT Procedure Topic No. 525-030-160 (New or Modified Interchanges) and complies with the FHWA two policy requirements. Appropriate District level quality control reviews have been conducted and all comments and issues have been resolved to their satisfaction. A record of all comments and responses provided during QC review is available in the project file or Electronic Review Comments (ERC) system.

	DocuSigned by:		
Requestor	kati Sherrard	Date:	04/20/2023 9:09 AM EDT
	F32DDD591732411		
	DocuSigned by:		
IRC	Joshna Jester	Date:	04/20/2023 9:10 AM EDT
	532828D21AF54A7		

EXECUTIVE SUMMARY

The interchange of I-75 with SR 951/Collier Boulevard is scheduled to undergo improvements through a Design/Build (D/B) project. A re-evaluation of the Interchange Modification Report (IMR) was required since the D/B concept slightly differs from the Request for Proposal (RFP) Concept. The initial planned improvements were identified through a Project Development and Environment (PD&E) Study and an Interchange Modification Report prepared in 2013 and approved in 2014, which recommended a partial clover leaf interchange with loop ramps in the northeast and southwest quadrants of the interchange. The main difference between the interchange configuration proposed by the D/B team and the Preferred Alternative evaluated in the PD&E/IMR documents is the number of entrance ramps in the eastbound direction along the I-75 freeway mainline.

The project is located along I-75 (Roadway ID: 03175000) at the interchange with SR 951/Collier Boulevard from Milepost (MP) 50.096 through MP 50.757. This interchange is located east of the City of Naples, in Collier County.

Based upon the results of this IMR Re-evaluation performed at the subject interchange, the following conclusions are summarized below:

- The Purpose and Need stated in the 2013 PD&E Study and in the 2013 IMR is still applicable for this IMR Re-evaluation. The purpose of the interchange modification is to improve the safety, LOS, and traffic operations at the I-75/Collier Boulevard interchange and adjacent intersections. Other goals of the project are to preserve the operational integrity and regional functionality of I-75, and enhance emergency evacuation and response times.
- The area of influence for this IMR Re-evaluation was selected in close coordination with FDOT D1 and using the guidelines described in the IARUG. Based on coordination with FDOT D1, it was decided that the main area of influence would concentrate only on the I-75 freeway segments and ramp junctions in proximity with the SR 951/Collier Boulevard interchange.
- In the case of this IMR Re-evaluation the analysis will focus on evaluating two alternatives; specifically, the RFP and D/B Concepts.
- Travel demand forecasting was performed using historical traffic data, the D1RPM model, and FDOT
 manuals to obtain future traffic volumes for the area of influence. It should be noted that for the
 development of the travel demand forecasting, planned and programmed projects were considered.
 Forecasted volumes were utilized in the safety and operational analysis.
- A freeway operational analysis was performed, using HCS, for each alternative for the future years of 2025 and 2045. Based on the results of the 2025 and 2045 operational analysis, both alternatives are expected

to operate at acceptable LOS and meet the FDOT LOS target of D. Although both alternatives are expected to operate satisfactorily, the D/B alternative seems to operate slightly better than the RFP alternative in certain portions of the I-75 mainline.

- A freeway safety analysis was performed, using ISATe, for each alternative for the future year of 2045. Overall, based on the results of the 2045 safety analysis, the RFP and D/B concepts are expected to have 18.9 and 19.6 crashes/year, respectively. This represents a slight increase (0.7 crashes/year) in the number of minor injury and property damaged only type crashes when comparing the D/B and RFP alternatives. It is noted that based on a review of the historical five-year crash data (2017-2021), the existing crash frequency (with the diamond interchange configuration) is about 13.75 crashes/year.
- Both alternatives would require identical design variations for several roadway elements related to horizontal curve radius, shoulder width, and horizontal clearance.
- Both alternatives would require identical environmental permits and no additional environmental impacts are expected.
- The cost for the RFP alternative is \$114,258,982.00 and the cost for the D/B alternative is \$97,900,000.00.
 The cost estimates are inclusive of preliminary engineering (PE), construction engineering and inspection (CEI), and contingency.
- The comparison of the two alternatives is based on numerous factors including construction costs, safety
 and operational performance, environmental and socioeconomic impacts, etc. Based on this comparison,
 the D/B alternative was determined to result in construction cost savings and offers similar safety and
 operational performances in comparison to the RFP alternative.
- A review of the FHWA policy points demonstrated that the D/B Alternative is expected to have similar safety and operational performances when compared to the RFP alternative, will not have adverse effects to the interstate facility, and will meet the FHWA policy points requirements.

Recommendation(s): Based on a comprehensive review documented in this IMR re-evaluation, it was determined that the D/B Concept performs equal to or better when compared to the RFP Concept. Design changes proposed by the D/B Concept are minor when compared to the RFP Concept. Based on the results of the analysis, the D/B alternative is expected to cost less, and it satisfies the purpose and need, SO&E requirements and FHWA's policy points, similar to the RFP Concept.

TABLE OF CONTENTS

EXECUTI	VE SUMMARY	i
TABLE O	F CONTENTS	iii
LIST OF	FIGURES	.v
LIST OF	TABLES	.v
LIST OF A	APPENDICES	vi
1. INT	RODUCTION	.1
1.1.	APPLICANT INFORMATION	.1
1.2.	PROJECT LOCATION	.1
1.3.	PROJECT BACKGROUND	.3
1.4.	PURPOSE AND NEED	.4
2. ME	THODOLOGY	.5
2.1.	AREA OF INFLUENCE	.5
2.2.	ANALYSIS YEARS	.6
2.3.	ALTERNATIVES	.6
2.4.	TRAVEL DEMAND FORECASTING ANALYSIS	.6
2.5.	TRAFFIC OPERATIONAL ANALYSIS	.7
2.6.	SAFETY ANALYSIS	.7
3. DA	TA COLLECTION	.8
3.1.	TRANSPORTATION SYSTEM DATA	.8
3.2.	EXISTING AND HISTORICAL TRAFFIC DATA	.9
3.3.	CRASH DATA	.9
3.4.	LAND USE 1	10
3.5.	ENVIRONMENTAL DATA	10
3.6.	PLANNED AND PROGRAMMED PROJECTS 1	10
4. ALT	ERNATIVES	11
4.1.	RFP CONCEPT 1	11
4.2.	D/B CONCEPT	12
5. TRA	VEL DEMAND FORECASTING	14
5.1.	SELECTED TRAVEL DEMAND MODEL AND YEARS OF ANALYSIS	14
5.2.	PROJECT TRAFFIC FORECAST DEVELOPMENT METHODOLOGY 1	15

F	DOT		April 2023
		⁷ I-75/SR 93 at SR 951/Collier Boulevard Interchange	
	5.2.2.	COLLIER BOULEVARD & I-75 SUBAREA IDENTIFICATION AND SUBAREA MODEL STATISTICS	SREVIEW:
		16	
	5.2.3.	SUBAREA NETWORK, ATTRIBUTES, COUNTS REVIEW, AND CODING:	17
	5.2.4.	SUBAREA TAZ DATA REVIEW AND ADJUSTMENTS:	17
	5.2.5.	SUBAREA MODEL VALIDATION CHECKS:	19
	5.2.6.	2045 NO-BUILD (RFP CONCEPT) NETWORK DEVELOPMENT, MODEL RUN, AND REASON,	ABLENESS
	CHECKS:	21	
	5.2.7.	DESIGN TRAFFIC DEVELOPMENT FOR 2045 NO-BUILD ALTERNATIVE AADT DEVELOPMEN	T: 22
	5.2.8.	DESIGN TRAFFIC DEVELOPMENT FOR 2045 NO-BUILD ALTERNATIVE (RFP CONCEPT) A	ND BUILD
	ALTERNA	ATIVES (D/B CONCEPT) - AM/PM DDHV DEVELOPMENT:	22
	5.2.9.	DESIGN TRAFFIC DEVELOPMENT FOR 2025 NO-BUILD ALTERNATIVE (RFP CONCEPT) A	ND BUILD
	ALTERNA	ATIVES (D/B CONCEPT) - AM/PM DDHV DEVELOPMENT:	22
5	5.3. TRA	FFIC FACTORS	23
6.	TRAFFIC	OPERATIONAL ANALYSIS	30
e	5.1. OPE	ENING YEAR (2025) OPERATING CONDITIONS	31
e	5.2. DES	GIGN YEAR (2045) OPERATING CONDITIONS	33
7.	SAFETY A	ANALYSIS	37
7	7.1. HIST	TORICAL CRASH ANALYSIS	37
	7.1.2.	STUDY INTERCHANGE	39
7	2.2. PRE	DICTIVE METHOD CRASH ANALYSIS	41
	7.2.1.	I-75 FREEWAY SAFETY ANALYSIS METHODOLOGY	41
7	7.3. SUN	MMARY OF I-75 RFP AND D/B FREEWAY SEGMENTS	42
8.	ANTICIPA	ATED DESIGN VARIATIONS	45
9.	ENVIRON	NMENTAL IMPACTS	46
10.	COST EST	ТІМАТЕ	47
11.	ALTERNA	ATIVE COMPARISON	47
12.	FUNDING	G PLAN AND SCHEDULE	48
13.	CONCEPT	TUAL SIGNING PLAN	48
14.	QUALIFY	ING PROVISIONS	
15.	RECOMM	MENDATIONS AND CONCLUSIONS	50

LIST OF FIGURES

Figure 1: Project Location Map	2
Figure 2: RFP Concept	12
Figure 3: RFP Concept Lane Configuration	12
Figure 4: D/B Concept	13
Figure 5: D/B Concept	13
Figure 6: Subarea TAZ Boundary	16
Figure 7: CUBE Network- Subarea Boundary	17
Figure 8: Population Growth Map (2015 to 2045)	18
Figure 9: Employment Growth Map (2015 to 2045)	18
Figure 10: RFP 2025 AM & PM Peak Hour DDHV	24
Figure 11: RFP 2045 AM & PM Peak Hour DDHV	25
Figure 12: RFP 2025 VS 2045 AADTs	26
Figure 13: D/B Concept 2025 AM & PM Peak Hour DDHV	27
Figure 14: D/B Concept 2045 AM & PM Peak Hour DDHV	28
Figure 15: D/B Concept 2025 VS 2045 AADT	29

LIST OF TABLES

Table 1: District One Contact Information	1
Table 2: Surrounding Roadway Network	8
Table 3: FDOT Traffic Count Stations	9
Table 4: RMSE by Volume Group - D1RPM 2015	15
Table 5: Highway Evaluation Statistics	16
Table 6: Subarea Model 2015 Population and Employment Statistics	19
Table 7: Subarea Model 2045 Population and Employment Statistics	19
Table 8: County Growth Rate	19
Table 9: Subarea TAZ Growth Rate	19
Table 10: Volume Group Statistics Comparison - Subarea Level	20
Table 11: Facility Type Volume to Count Statistics - Subarea Level	20
Table 12: Facility Type Volume to Count Statistics - Subarea Level	21
Table 13: Traffic Factors	23

FDOT	Interchange Modification Report (IMR) Re-evaluation	April 2023
	I-75/SR 93 at SR 951/Collier Boulevard Interchange	
Table 14: Numl	per of Segments along I-75 used for the Freeway Operational Analysis	
Table 15: Sumr	nary of 2025 Peak Hour RFP Freeway Operating Conditions	
Table 16: Sumr	nary of 2025 Peak Hour D/B Freeway Operating Conditions	
Table 17: Sumr	nary of 2025 Peak Hour RFP and D/B Freeway Facility Operating Conditions	
Table 18: Sumr	nary of 2045 Peak Hour RFP Freeway Operating Conditions	
Table 19: Sumr	nary of 2045 Peak Hour D/B Freeway Operating Conditions	
Table 20: Sumr	nary of 2045 Peak Hour RFP and D/B Freeway Facility Operating Conditions	
Table 21: Entire	e Study Corridor Crash Statistics	
Table 22: Imme	ediate Interchange Limits Crash Statistics	
Table 23: Sumr	nary of 2045 RFP Freeway Safety Conditions	
Table 24: Sumr	nary of 2045 D/B Freeway Safety Conditions	
Table 25: Sumr	nary of 2045 RFP and D/B Freeway Safety Conditions	
Table 26: RFP a	nd D/B Alternatives Design Variations	
Table 27: Horiz	ontal Curve Radius Summary	
Table 28: Ramp	0 C2 Shoulder Width Summary	
Table 29: Cost	Estimate for RFP and D/B Alternatives	
Table 30: RFP &	b D/B Alternative Comparison	
Table 31: Revie	w of Qualifying Provisions	

LIST OF APPENDICES

Appendix A: Approved and Signed MLOU
Appendix B: Transportation System Data
Appendix C: FTO Traffic Data
Appendix D: Crash Summary Worksheets and Detailed Fatal and Pedestrian Police Reports
Appendix E: Land Use Map
Appendix F: Conceptual RFP and D/B Figures
Appendix G: Travel Demand Forecasting Information
Appendix H: Historical Trendline Analysis
Appendix I: Traffic Analysis Output Reports
Appendix J: Safety Analysis Output Reports
Appendix K: Conceptual Signing Plan

1. INTRODUCTION

The interchange of I-75 with SR 951/Collier Boulevard is scheduled to undergo improvements through a Design/Build (D/B) project. A re-evaluation of the Interchange Modification Report (IMR) is required since the D/B concept slightly differs from the Request for Proposal (RFP) Concept.

The initial planned improvements were identified through a Project Development and Environment (PD&E) Study and an Interchange Modification Report prepared in 2013 and approved in 2014, which recommended a partial clover leaf interchange with loop ramps in the northeast and southwest quadrants of the interchange. The main difference between the interchange configuration proposed by the D/B team and the Preferred Alternative evaluated in the PD&E/IMR documents is the number of entrance ramps in the eastbound direction along the I-75 freeway mainline.

This IMR Re-evaluation summarizes the traffic analysis and evaluation of the interchange configuration presented by the D/B team which includes two entrance ramps in the I-75 eastbound direction. The D/B concept also includes the widening of the I-75 bridge over SR 951/Collier Boulevard to accommodate the entrance loop ramp from southbound SR 951/Collier Boulevard and provide the necessary acceleration lane for these drivers and the drivers entering from northbound SR 951/Collier Boulevard.

The subsequent sections provide more detailed information of this Re-evaluation.

1.1. APPLICANT INFORMATION

This document is being submitted by the Florida Department of Transportation (FDOT) District One (D1).

Address	Phone Number	
801 N. Broadway Avenue	863-519-2300	
Bartow, FL 33830-3809	803-319-2300	

Table 1: District One Contact Information

1.2. PROJECT LOCATION

The project is located along I-75 (Roadway ID: 03175000) from Milepost (MP) 50.096 through MP 50.757 at the interchange with SR 951, located east of the City of Naples, in Collier County (see **Figure 1**). Everglades Boulevard is the closest continuous north-south roadway (located 8.9 miles east of SR 951). The nearest major I-75 interchanges, east and west of SR 951 are SR 29 (located 21.2 miles east of SR 951) and CR 886/Golden Gate Parkway (CR 886) (located 3.3 miles west of SR 951).

April 2023

I-75/SR 93 at SR 951/Collier Boulevard Interchange

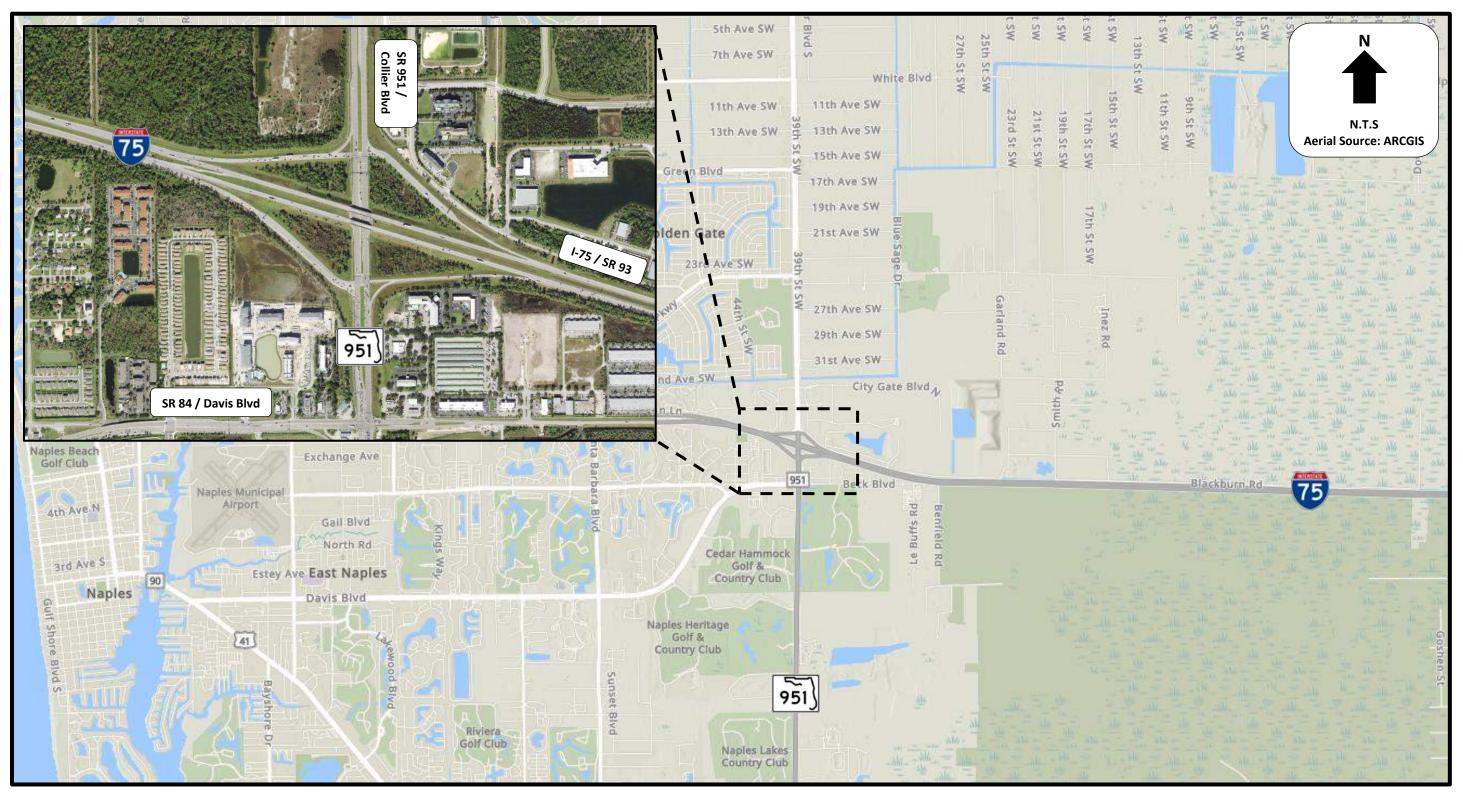


Figure 1: Project Location Map

1.3. PROJECT BACKGROUND

In September 2022, a D/B Contract (FPID: 425843-2-52-01, 425843-2-56-01, 425843-56-02) was issued by the Florida Department of Transportation (FDOT) District One (D1) to construct a new configuration at the current interchange of I-75 with SR 951/Collier Boulevard. During the D/B pursuit, the interchange design concept proposed by the D/B Team (referred as the D/B Concept in this report) was slightly different than the one included in the original RFP Concept provided by FDOT-D1 during the advertisement.

The RFP concept corresponds to the Preferred Alternative (Alternative 1) selected under the PD&E Study signed in 2014 (FPID: 425843-1-22-01). The Preferred Alternative was evaluated from the safety and traffic operations perspective in the Project Traffic Report (PTR) dated July 2013 and in the Interchange Modification Report (IMR) dated September 2013. Based on the analysis documented in these two reports, the diamond interchange at I-75 with Collier Boulevard and adjacent intersections along Collier Boulevard operated at acceptable levels of service (LOS) for existing conditions (2011). However, Alternative 1 was recommended to ensure acceptable LOS along Collier Boulevard since the existing diamond interchange would result in segments operating at unacceptable LOS under the 2035 projected volumes. Alternative 1 modifies the existing diamond interchange to a partial clover leaf configuration (with loop ramps in the southwest and northeast quadrants of the interchange).

The main difference between the RFP Concept and the D/B Concept (presented as Alternative Technical Concept #5 – ATC #5) is the number of merge points along eastbound I-75 at the interchange with Collier Boulevard. In the RFP concept, the loop ramp from southbound Collier Boulevard to eastbound I-75 and the ramp from northbound Collier Boulevard to eastbound I-75 merge on a ramp parallel to the mainline prior to merging with eastbound I-75 mainline traffic as a single point entrance ramp. A new bridge parallel to the mainline carries the loop ramp traffic over Collier Boulevard.

In the D/B Concept, the existing mainline bridge is widened to accommodate the loop ramp traffic from southbound Collier Boulevard to eastbound I-75. This ramp merges with the I-75 mainline onto a new auxiliary lane. The ramp for northbound Collier Boulevard to eastbound I-75 merges with the new auxiliary lane approximately 2,500 feet east of Collier Boulevard.

The overall purpose of this IMR Re-evaluation is to determine if the D/B Concept satisfies the Safety, Operational and Engineering (SO&E) criteria; and the Federal Highway Administration (FHWA) policy points, as the RFP Concept did. Hence, this IMR Re-evaluation will involve performing a safety and operational analysis, traffic data forecasting, traffic and safety data collection, conceptual signing plan, review of existing and future plans/projects,

I-75/SR 93 at SR 951/Collier Boulevard Interchange

and coordination to evaluate these alternatives. The following sections briefly describe the previous studies and current efforts performed in relation to the subject interchange.

1.4. PURPOSE AND NEED

The Purpose and Need stated in the 2013 PD&E Study and in the 2013 IMR is still applicable for this IMR Reevaluation and is summarized in this report for reference. I-75 is an integral part of the Strategic Intermodal System (SIS) providing for high-speed and high-volume traffic movements along the west coast of Florida and connecting the metropolitan areas of Naples and Miami. Collier Boulevard is the eastern most major north-south arterial of the Naples metropolitan region and connects densely developed areas such as Marco Island and Golden Gate to I-75. The Collier Boulevard interchange at I-75 is the last access point prior to the Alligator Alley entry toll gate. Therefore, the aim of the interchange modification is to improve the safety, LOS, and traffic operations at the I-75/Collier Boulevard interchange and adjacent intersections.

From the analysis conducted during the preparation of the 2013 PD&E Study it was determined that the interchange of I-75 with Collier Boulevard operated at acceptable LOS in 2011. Although along Collier Boulevard moderate levels of congestion were observed south of I-75 through the Collier Boulevard/Davis Boulevard intersection (located approximately 1,300 feet south), overall acceptable LOS were also estimated. However, for the year 2035 the No-Build Scenario showed that several intersections along Collier Boulevard would operate below acceptable LOS. In other words, the 2013 analyses determined that the capacity deficiency was not displayed in the existing conditions evaluation, but it is expected to occur by the year 2035 along the SR 951/Collier Boulevard limits.

Other goals of the project are to:

- 1. Preserve the operational integrity and regional functionality of I-75 (and, therefore, the regional transportation network).
- 2. Enhance emergency evacuation and response times.

2. METHODOLOGY

The methodology utilized for this IMR Re-evaluation follows the guidelines contained in the FDOT Policy No. 000-525-015, "Approval of New or Modified Access to Limited Access Highways on the State Highway System (SHS)"; FDOT Interchange Access Request User's Guide (IARUG; New or Modified Interchanges FDOT Procedure No. 525-030-160); and the Project Traffic Forecasting FDOT Procedure No. 525-030-120. In addition, close coordination with FDOT D1 was conducted prior to developing the Methodology Letter of Understanding (MLOU) where details of the steps to conduct the analysis were outlined and described. The MLOU was signed on December 22, 2022, and is included in **Appendix A**. Through early coordination with FDOT D1 it was determined that the IMR Reevaluation would focus on the analysis of the RFP Concept versus the D/B Concept based on forecasted traffic. Existing conditions analysis is not necessary.

The following sections summarize the information documented in the MLOU signed on December 22, 2022.

2.1. AREA OF INFLUENCE

The area of influence for this IMR Re-evaluation was selected in close coordination with FDOT D1 and using the guidelines described in the IARUG. Based on coordination with FDOT D1, it was decided that the main area of influence would concentrate only on the I-75 segments in proximity with the SR 951/Collier Boulevard interchange. Local intersections along the SR 951/Collier Boulevard were not considered in the analysis since the D/B Concept did not propose any design changes along the local arterial. In other words, the selected area of influence corresponds to the area that was anticipated to experience significant operational changes when the RFP Concept was compared to the D/B Concept. The following briefly outlines the freeway segments and ramp junctions within the influence area along the mainline:

Freeway Segments:

• Segment along I-75 from the overpass at Everglades Boulevard (MP 41.520) to the CR 886 northbound off-ramp (MP 53.349)

Ramp Junctions:

- EB I-75 to NB/SB Collier Boulevard Off-Ramp
- SB Collier Boulevard to EB I-75 Loop On-Ramp
- NB Collier Boulevard to EB I-75 On-Ramp
- WB I-75 to NB/SB Collier Boulevard Off-Ramp
- NB Collier Boulevard to WB I-75 Loop On-Ramp
- NB/SB Collier Boulevard to WB I-75 On-Ramp

It is noted that for the safety and travel demand forecasting analyses (described in subsequent sections of this report) the area of influence was slightly modified to accurately include all elements required for these types of analyses.

2.2. ANALYSIS YEARS

This IMR Re-evaluation will focus on the analysis of future conditions to ensure that the RFP Concept and the D/B Concept offer similar operational conditions.

Traffic Forecasting:

<u>Base Year:</u> 2015
 <u>Opening Year:</u> 2025
 <u>Horizon Year:</u> 2045

Traffic Operational Analysis:

Opening Year: 2025
 Design Year: 2045

2.3. ALTERNATIVES

For the purposes of this IMR Re-evaluation, the RFP Concept will represent the No-Build Alternative, and the D/B Concept will represent the Build Alternative. Comparison between the two alternatives will be conducted to ensure that the D/B Concept provides comparable LOS results (equal or better) than the RFP Concept.

2.4. TRAVEL DEMAND FORECASTING ANALYSIS

The travel demand forecasting began by utilizing the FDOT D1 Reginal Planning Model (D1RPM) (travel demand model) to obtain base, opening, and design year preliminary AADTs with accompanying growth rates. Base (2015), opening (2025) and design year (2045) traffic volumes were developed considering various methods (outlined below) to ensure that the developed traffic volumes are accurate and reasonable. It is noted that opening year traffic volumes will be developed by linear interpolation between 2019 historical and design year volumes. The travel demand output was reviewed for reasonableness by:

- Comparing preliminary D1RPM outputs and growth rates to historical AADTs, growth rates, population and economic data, and existing and future land uses (obtained from Florida Traffic Online (FTO), Bureau of Economic and Business Research (BEBR), past FDOT studies, among other resources)
- Comparing preliminary D1RPM output AADTs to the latest historical AADTs that will be projected to the future year (2045) using the growth rates obtained from this analysis.

Based on these reviews, the FDOT D1RPM travel demand model was adjusted to account for any errors in the base year model validation to obtain the finalized AADTs to be used in the analysis.

2.5. TRAFFIC OPERATIONAL ANALYSIS

The traffic operational analysis will focus on the freeway segments (basic and merge/diverge) in the vicinity of the interchange of I-75 at Collier Boulevard. The segments of I-75 to the east and west of the I-75 interchange at Collier Boulevard will be analyzed using the procedure and criteria outlined in the Highway Capacity Manual 7th Edition (HCM 7) and its respective software Highway Capacity Software 2023 (HCS 2023 version 8.2).

Level of Service (LOS) will be estimated based on density (pc/mile/lane) as the measure of effectiveness (MOE) as per the HCM methodology. Density will be the primary MOE to evaluate basic mainline freeway segments as well as the merge/diverge areas. Speed will also be summarized and compared between the alternatives. LOS targets per the State Highway System, Policy No. 000-525-006, effective April 19, 2017, will be utilized and are summarized below:

• I-75 freeway mainline and merge/diverge urban segments: LOS D

2.6. SAFETY ANALYSIS

The safety analysis will also focus on the freeway segments (basic and merge/diverge) in the vicinity of the interchange of I-75 at SR 951. The segments along the I-75 freeway mainline will be analyzed using the Highway Safety Manual 2010 - 1st Edition (HSM 1st Edition) methodologies by utilizing the Enhanced Interchange Safety Analysis Tool (ISATe).

The latest five years of crash data were used to perform the safety analysis (2017-2021). Data was obtained through different sources: FDOT's CARS database, FDOT SSOGIS database and Signal Four Data Analytics.

3. DATA COLLECTION

A desktop data collection effort took place in order to better understand the characteristics of the area being analyzed. Additionally, this information was utilized as a reference to compare anticipated future results and develop a sound technical analysis for this IMR Re-evaluation. The data collection effort primarily focused on gathering information from previous studies, straight line diagrams (SLD), historical traffic counts from the Florida Traffic Online (FTO) website, crash data, land use, and environmental data, among other types of data. Since a local arterial traffic operational analysis was not required for this IMR Re-evaluation, data collection such as traffic counts were not performed.

The following subsections summarize the data collection performed for this IMR Re-evaluation.

3.1. TRANSPORTATION SYSTEM DATA

The current configuration of the I-75 and SR 951/Collier Boulevard interchange corresponds to a diamond interchange design with single lane ramps (at ramp gore) in all four quadrants. The roadways surrounding and encompassing the study area with their Section ID (if applicable), posted speed limit, and number of lanes are outlined in **Table 2**.

Surrounding Roadway Network					
DescriptionSection IDPosted SpeedNo. of LanesLimit (mph)(Both Directions)					
I-75/SR 93	3175000	70	4		
SR 951/Collier Blvd	3030001	45	6 - 8		

Table 2: Surrounding Roadway Network

Previous reports were gathered and reviewed to gain knowledge of the area under analysis. The following list summarizes the reports that were reviewed, and utilized as a historical data collection resource for the analysis conducted in this IMR Re-evaluation:

- Project Traffic Report (PTR), dated July 2013
- Interchange Modification Report, dated September 2013
- Previous Re-evaluations:
 - o Design Traffic Technical Memorandum, dated May 2016
 - Interchange Access Request Re-evaluation Assessment Technical Memorandum, dated November 2018

 I-75 Southwest Connect, FDOT District One Interstate Project – I-75 South Corridor Master Plan (November 2021)

Appendix B includes information related to Straight Line Diagrams (SLD) as well as some traffic data information extracted from previous studies.

It is noted that the 2019 traffic volumes obtained from the I-75 Southwest Connect Project were compared to the 2019 and 2021 volumes obtained from the Florida Traffic Online website (stations 037014, 037013, 037012, 037011, 0320000, 030351). Based on the comparison it was concluded that the volumes were equivalent and no major changes in traffic patterns were observed.

3.2. EXISTING AND HISTORICAL TRAFFIC DATA

The latest available and historical traffic data was obtained from FDOT's Florida Traffic Online (FTO) database. Additionally, traffic data from the 2019 data collection effort associated with D1's Southwest Connect project, which included the I-75/SR 951 interchange, was used to supplement, compare, and confirm data from the FDOT's FTO, depending on the location and type of count performed. **Table 3** summarizes the FDOT Traffic count stations located in the vicinity of the interchange of I-75 with SR 951/Collier Boulevard. **Appendix C** includes the information downloaded from the FTO website.

Description	Station ID
I-75, West of SR 951/Collier Boulevard	32000
I-75 EB Off-Ramp to SR 951/Collier Boulevard	37014
I-75 EB On-Ramp from SR 951/Collier Boulevard	37011
I-75 WB Off-Ramp to SR 951/Collier Boulevard	37012
I-75 WB On-Ramp from SR 951/Collier Boulevard	37013

Table 3: FDOT Traffic Count Stations

3.3. CRASH DATA

The latest five years of crash data will be used to perform the analysis (2017-2021). Data will be obtained through different sources: FDOT's CARS database, FDOT SSOGIS database and Signal Four Data Analytics. **Appendix D** includes the crash summary information.

3.4. LAND USE

The D1RPM, v2 was released on January 29, 2021, and was used in this IMR Re-evaluation. The future land use was updated to 2045 as part of the model development efforts and the D1RPM, v2 reflects the most up-to-date land use assumptions along the I-75 corridor. **Appendix E** includes a 2045 Land Use Map.

3.5. ENVIRONMENTAL DATA

No detailed environmental data was collected since the D/B Concept is not expected to change the environmental impacts already evaluated during the 2013 PD&E Study where the RFP Concept was selected as the preferred alternative.

Nonetheless, the status of the following environmental permits was reviewed and is summarized below:

- SFWMD Right of Way Occupancy Permit Issued 9/30/22.
- SFWMD Environmental Resource Permit Anticipated issue date of 11/29/22
- FDEP 404 Permit 30-45 days after SFWMD ERP is issued.

3.6. PLANNED AND PROGRAMMED PROJECTS

When developing/confirming the roadway network for the travel demand model for the 2045 RFP Concept several adopted 2045 Long-Range Transportation Plan (LRTP) (from various agencies) were reviewed. Some of the LRTPs that were reviewed were: Collier County Transportation Improvement Program (TIP), SIS adopted 5-year plan, and SIS Long Range Cost Feasible Plan. The following is the summary of the projects programmed to be built in the area and for which information had to be confirmed with FDOT:

1. I-75 Managed Lanes:

Based on the information included in the SIS Long Range Cost Feasible Plan (FY 2029 – 2045) ID 3332 from East of SR 951 to Collier / Lee County Line, this managed lane project was funded for Preliminary Engineering; however, it was not funded for construction. Moreover, it was not listed in the current I-75 master plan.

Based on the coordination with FDOT District 1, it was recommended not to assume the managed lanes along I-75 for the development of future travel demand. The managed lanes were deleted and instead an extra General Purpose Lane was added for travel demand purposes.

2. Golden Gate Parkway and I-75 Interchange:

Through coordination with D1 it was determined that the improvements listed in the Collier Country LRTP Cost Feasible Plan for the interchange of Golden Gate Parkway and the I-75 interchange only considered the widening

of the southbound on-ramp from northbound Golden Gate Parkway. However, no construction funds were allocated for the project. So, it was decided that this ramp would remain coded as a one-lane ramp in the travel demand model.

3. Everglades Boulevard South widening between I-75 and Vanderbilt Beach Road:

Based on the information presented in the Cost Feasible Plan/TIP/SIS plans, no widening is programmed for Everglades Boulevard between I-75 and Vanderbilt Road. However, the 2045 original travel demand model network shows Everglades Boulevard as a 4-lane roadway.

Based on coordination with FDOT, this widening project was requested to be included in the D1RPM by Collier County. Since the original modeling effort for the 2013 PD&E Study project included the Everglades interchange, then the Everglades interchange and the 4 lanes (as coded in the model) were considered for this IMR Reevaluation.

4. ALTERNATIVES

As stated in the latest version of the IARUG, when the change in approved access design concept occurs during a D/B project, the Re-evaluation shall show that the new concept satisfies the Safety, Operational and Engineering (SO&E) acceptability, and FHWA's policy points. Therefore, in these types of projects, the approved RFP concept is included and serves as the No-Build Alternative for comparison purposes.

In the case of this IMR Re-evaluation the analysis will focus on evaluating two alternatives:

- 1. The RFP Concept
- 2. The D/B Concept

The following sections will provide a detailed description of these alternatives. In addition, detailed conceptual figures are provided in **Appendix D** for each alternative.

4.1. RFP CONCEPT

The RFP Concept is shown in **Figure 2** and **Figure 3**. The RFP Concept pertains to the PD&E Alternative 1 (FPID: 425843-1-22-01) completed in 2013. This alternative combines a classic Partial Cloverleaf (ParClo) interchange with two flyover ramp connections to and from northbound and southbound SR 951. This design allows vehicular traffic to access I-75 without traveling through the signalized intersections along the SR 951 arterial. The alternative provides two new loop ramps in the southwest and northeast quadrants with new bridges providing acceleration lanes onto the I-75 freeway. The entrance for the northbound SR 951 loop ramp to I-75 westbound

I-75/SR 93 at SR 951/Collier Boulevard Interchange

is provided along Collier Boulevard just north of the intersection with Business Circle South. The entrance for southbound SR 951 loop ramp to eastbound I-75 is located just south of the westbound on/off ramps signalized intersection. This loop ramp merges with the northbound SR 951 to eastbound I-75 ramp on a bridge parallel to the I-75 mainline, prior to entering the mainline about 2,500 feet east of SR 951/Collier Boulevard as one single merge point.

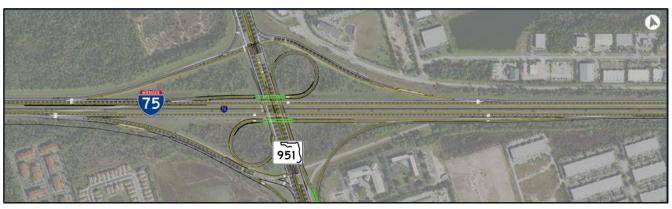
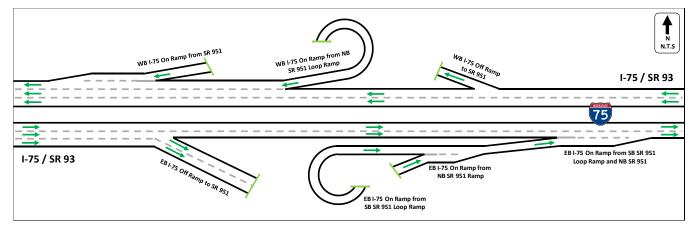



Figure 3: RFP Concept Lane Configuration

4.2. D/B CONCEPT

The D/B Concept is shown in **Figure 4** and **Figure 5** and it was developed as part of ATC #5 proposed during the design phase of the D/B project. Overall, the D/B alternative is similar to the RFP alternative with the exception of the number of merge points along eastbound I-75 at the subject interchange. In the RFP concept, the loop ramp from southbound SR 951 to eastbound I-75, and the ramp from northbound SR 951 to eastbound I-75 merge onto a ramp parallel to the I-75 mainline prior to merging with eastbound I-75 mainline traffic as a single point entrance ramp. Additionally, in the RFP alternative, a new bridge parallel to the mainline would carry the loop ramp traffic over SR 951. However, in the D/B Concept, the existing mainline bridge is widened to accommodate the auxiliary lane that would carry the traffic for the loop ramp. As a result, the ramp for southbound SR 951 to eastbound I-

I-75/SR 93 at SR 951/Collier Boulevard Interchange

75 merges directly with the I-75 mainline though an auxiliary lane that ends approximately 2,500 feet east of SR 951/Collier Boulevard. It is noted that the entrance for the new northbound I-75 on-ramp loop from SR 951 was shifted approximately 990 feet, along I-75, upstream of the original location proposed by the RFP alternative.

The entrance point for the northbound SR 951 to eastbound I-75 on-ramp was moved north of the Davis Boulevard intersection, in order to reduce the number of potential conflicts. The new location of the entrance ramp resulted in a shorter turning lane of about 330 feet. By moving the entrance point to the ramp north, the number of potential conflicting movements is decreased by increasing the distance that in-coming drivers from Davis Boulevard have to position themselves to enter the ramp.

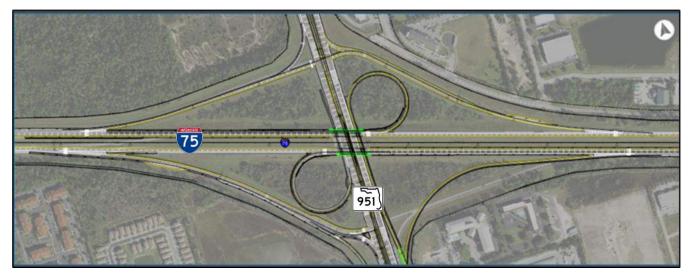
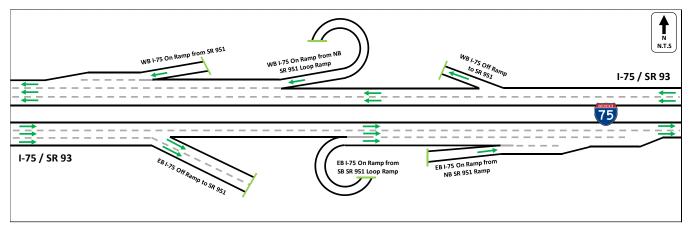



Figure 4: D/B Concept

Figure 5: D/B Concept

5. TRAVEL DEMAND FORECASTING

The travel demand forecasting effort was briefly described in Section 2.4 of this report. The model selection and development of traffic demand volume projections were performed based on the guidelines and techniques published in the FDOT Project Traffic Forecasting Handbook, Project Traffic Forecasting Procedure Topic 525-030-120, and the Traffic Analysis Handbook. The sections below provide detailed information in regards to the model selection, assumptions, and validation techniques utilized in the traffic forecasting.

5.1. SELECTED TRAVEL DEMAND MODEL AND YEARS OF ANALYSIS

The D1 Regional Planning Model Version 2.0 (D1RPM V2.0), updated on January 29, 2021, was selected to develop the travel demand forecasting for this study. The D1RPM model is a Florida Standard Urban Transportation Structure (FSUTMS), four-step, trip-based model. The model, with 5,280 traffic analysis zones (TAZ) covers 12,400 square miles in 12 counties: Charlotte, Collier, Desoto, Glades, Hardee, Hendry, Highlands, Lee, Manatee, Okeechobee, Polk, and Sarasota. A portion of Osceola County adjacent to NE Polk County is also included. The D1RPM consists of a base year of 2015 and a forecast year of 2045. The model was used and comprehensively tested in the MPO LRTP's and is the adopted official model in the region to be used in the planning/PD&E and traffic forecasting studies. The model has 4 time-period assignments:

- 1. AM-Peak Period (6:00 AM 9:00 AM)
- 2. Midday Period (9:00 AM 4:00 PM)
- 3. PM-Peak Period (4:00 PM 7:00 PM)
- 4. Overnight Period (7:00 PM 6:00 AM)

The model's highway traffic assignment is performed at individual peak period-level, and the assigned volumes from all four periods are combined to report the annual average daily traffic (AADT) volumes. Therefore, no adjustment factors are necessary to forecast the AADT volumes. However, adjustments may be needed to ensure subarea model volumes match the AADT counts closely.

As mentioned in **Section 2.2** of this report the analysis years considered for the travel demand forecasting effort included:

- Base year: 2015 (for subarea model validation)
- Opening year: 2025 (developed by interpolation)
- Horizon year: 2045 (for design traffic development)

5.2. PROJECT TRAFFIC FORECAST DEVELOPMENT METHODOLOGY

Several methods were considered for developing the 2025 and 2045 AADT to ensure accuracy and reasonableness of the volumes. The travel demand forecasting effort started with the 2045 AADTs obtained from the model as the basis. These AADTs will be used to compute growth rates based on model AADTs (2015 vs 2045). These growth rates were compared to historical growth rates estimated from various sources. **Appendix H** contains the historical trendline analysis. Then, growth rates were used to project 2019 volumes into the year 2045. Several comparisons were performed between AADTs obtained from the model and AADTs obtained from projecting 2019 volumes using growth rates. Estimation of the AADTs to be used for the analysis was a combination of these procedures. Therefore, post-model adjustments were performed (as necessary) if the volume-to-count ratio was more or less than 10%, by accounting for the errors in the base year model validation. The project traffic forecasting methodology was developed using the following tasks series described below:

5.2.1. FDOT District 1 (FDOT D1) Model setup and "as is" 2015 and 2045 runs:

The latest FDOT D1 Regional Planning Model (D1RPM) from the model inventory (fsutmsonline.net) was obtained and the "as is" model runs of the 2015 and 2045 scenarios were performed. The 2015 base year and the 2045 cost-feasible LRTP model runs were performed as is, without any modifications to the model inputs. The key regional model output summaries such as the RMSE, vehicle miles traveled (VMT) and vehicle hours traveled (VHT) measures were benchmarked as shown in **Table 4** and **Table 5**. **Appendix G** contains information documenting the D1RMP 2015 Volume to count ratios.

ltem No.	Volume Group	Acceptable RMSE	No of Links	RMSE
1	1- 5,000	< 55.00%	3,034	59.00%
2	5,000- 10,000	< 45.00%	1,254	34.90%
3	10,000- 20,000	< 35.00%	982	24.80%
4	20,000- 30,000	< 27.00%	318	20.90%
5	30,000- 40,000	< 24.00%	39	18.70%
6	40,000- 50,000	< 22.00%	34	14.30%
7	50,000- 60,000	< 20.00%	15	8.00%
8	60,000- 70,000	< 18.00%	6	6.00%

Table 4: RMSE by Volume Group - D1RPM 2015
--

Description	As-is 2015	As-is 2045
Total Number of Links	47517.00	49429.00
Total Centerline Miles	12029.00	11369.00
Total Lane Miles	17913.00	20014.00
Total Directional Miles	13504.00	14197.00
Total Volumes All Links	251584574.00	392899033.00
Total VMT All Links	64224542.00	107502143.00
Total VHT All Links	1625398.00	2852726.00
Original Speed (MPH)	36.98	37.77
Congested Speed (MPH)	36.66	36.70

Table 5: Highway Evaluation Statistics

5.2.2. COLLIER BOULEVARD & I-75 SUBAREA IDENTIFICATION AND SUBAREA MODEL STATISTICS REVIEW:

A subarea was delineated for the travel demand model validation checks. The subarea included I-75 and Collier Boulevard interchange and its upstream and downstream interchanges. In addition to this core area of influence, the roadway network links within an approximate radius of 2.0 miles were included in the subarea. Note that the purpose of the subarea delineation is to identify the network links and TAZs within the subarea boundary and to measure model validation statistics within this area. The subarea TAZ boundary is depicted in **Figure 6**.

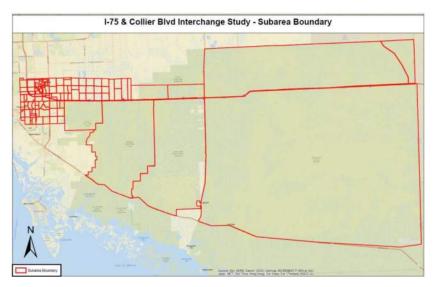


Figure 6: Subarea TAZ Boundary

The following three sub-sections (5.2.3 through 5.2.5) relate to the model validation methodology.

5.2.3. SUBAREA NETWORK, ATTRIBUTES, COUNTS REVIEW, AND CODING:

Within the subarea boundary, the study team performed the model's base year network reviews. **Figure 7** shows the Cube network subarea boundary. The model's 2015 network was reviewed against the historic aerial images available from Google and other free sources. It is standard practice to perform a detailed review of the model network links and their characteristics within a designated subarea while performing the design traffic forecasts. The model's network geometry, and key network attributes such as the number of lanes, posted speeds, and facility types were reviewed and updated as part of this effort. The changes to the model network were documented for (a) model validation check documentation purposes, and (b) propagating the changes to the future conditions' networks. In addition, the 2015 traffic counts coded in the model networks were reviewed and updated as needed. **Appendix G** documents the network, count, and attribute updates.



Figure 7: CUBE Network- Subarea Boundary

5.2.4. SUBAREA TAZ DATA REVIEW AND ADJUSTMENTS:

The review of the TAZ data within the subarea included the review of the population and employment growth between the base year (2015) and the future year (2045) TAZs. **Figure 8** depicts the subarea TAZ population growth between 2015 and 2045. **Figure 9** shows the subarea TAZ employment growth between 2015 and 2045.

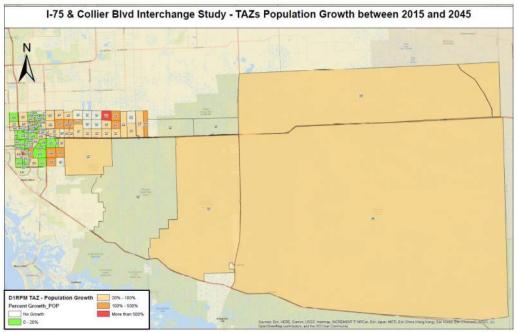


Figure 8: Population Growth Map (2015 to 2045)

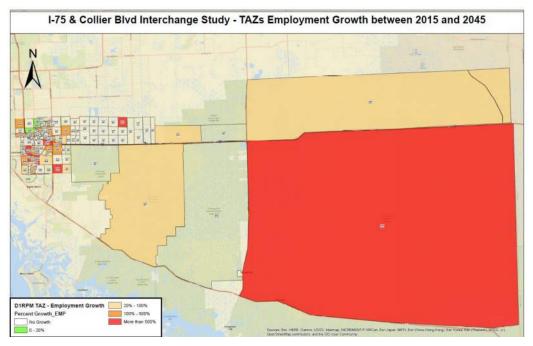


Figure 9: Employment Growth Map (2015 to 2045)

 Table 6 and Table 7 show the subarea model population and employment statistics for 2015 and 2045, respectively.

April 2023

I-75/SR 93 at SR 951/Collier Boulevard Interchange

Table 6: Subarea Model 2015 Population and Employment Statistics

2015 Population	2015 Employment			
Single Family Residential	26,526	Industrial Jobs	1,519	
Multi Family Residential 30,548		Commercial Jobs	2 <i>,</i> 395	
		Service Jobs	5,994	
Influence Area Total	57,074	Influence Area Total	9,908	

Table 7: Subarea Model 2045 Population and Employment Statistics

2045 Population	2045 Employment			
Single Family Residential	34,523	Industrial Jobs	2,760	
Multi Family Residential 36,090		Commercial Jobs	5,367	
		Service Jobs	14,905	
Influence Area Total	70,613	Influence Area Total	23,032	

Table 8 and Table 9 present the growth rates at the county level and subarea levels, respectively.

Table 8: County Growth Rate

Collier County	Population	Employment	
2015	357112.00	143041.00	
2045	511012.00	241366.00	
Growth from 2015 to 2045	153900.00	98325.00	
Annual Growth	5130.00	3278.00	
Annual Growth Rate	1.44% 2.29%		
Average Weighted Growth Rate	1.71%		

Table 9: Subarea TAZ Growth Rate

Subarea	Population	Employment	
2015	59272.00	10211.00	
2045	73170.00	23852.00	
Growth from 2015 to 2045	13898.00	13641.00	
Annual Growth	463.00	455.00	
Annual Growth Rate	0.78%	4.45%	
Average Weighted Growth Rate	1.68%		

5.2.5. SUBAREA MODEL VALIDATION CHECKS:

The model validation checks and adjustments were performed within the subarea boundary. The 2015 model outputs were compared against the 2015 AADT traffic counts, and the model validation summaries within the subarea were checked. Also, the subarea-level, facility type, and link-level model validation statistics were evaluated. The model parameters like centroid connectors, facility type, capacity, and speeds were adjusted,

I-75/SR 93 at SR 951/Collier Boulevard Interchange

as necessary, to improve the model validation. **Table 10** shows the comparison of the volume group statistics at the subarea level. In addition, **Table 11** shows a volume-to-count ratio comparison by facility type at the subarea level. Similarly, **Table 12** shows the calculated average volume-to-count ratios by facility subgroups (e.g. FTYPE 2x) for the subarea and its comparison with acceptable thresholds.

	Volume	Acceptable	As-is	2015	Updated 2015		
Item No.	Group	RMSE	No of Links	RMSE	No of Links	RMSE	
1	1- 5,000	< 55.00%	30	28%	29	32%	
2	5,000- 10,000	< 45.00%	20	23%	24	25%	
3	10,000- 20,000	< 35.00%	38	21%	37	24%	
4	20,000- 30,000	< 27.00%	7	11%	7	13%	
5	30,000- 40,000	< 24.00%	2	10%	2	12%	
Total	1-500,000	<39.00%	97	22%	99	25%	

Table 10: Volume Group Statistics Comparison - Subarea Level

Table 11: Facility Type Volume to Count Statistics - Subarea Level

		As-is	2015		Updated 2015				
Facility Type	No. of Links	Volume	Count	Volume/ Count	No. of Links	Volume	Count	Volume/ Count	
12	4	104,873	110,500	0.95	4	113,108	110,500	1.02	
22	4	5,059	4,550	1.11	4	5,061	4,550	1.11	
23	46	560,922	627,362	0.89	48	564,956	640,582	0.88	
35	6	8,113	8,392	0.97	6	8,137	8,392	0.97	
41	6	30,486	50,532	0.6	8	39,263	68,964	0.57	
43	6	18,487	17,708	1.04	6	20,329	17,708	1.15	
44	2	6,286	7,800	0.81	2	6,245	7,800	0.8	
52	4	21,898	23,000	0.95	4	21,900	23,000	0.95	
71	5	26,599	24,600	1.08	4	24,085	22,100	1.09	
72	1	8,227	10,000	0.82	1	8,749	10,000	0.87	
75	4	30,586	34,300	0.89	4	40,351	34,300	1.18	
92	4	38,097	43,626	0.87	4	38,110	43,626	0.87	
97	2	2,062	1,950	1.06	2	2,068	1,950	1.06	
98	2	2,072	1,950	1.06	2	2,076	1,950	1.06	
Total	96	863,767	966,270	0.89	99	894,438	995,422	0.9	

I-75/SR 93 at SR 951/Collier Boulevard Interchange

				As-is 2015					Updated 2015				
Facility Type	FTYPE	Volume / Count	Volume Group RMSE	No. of Links	Volume	Count	Volume / Count	RMSE	No. of Links	Volume	Count	Volume / Count	RMSE
Freeway	12, 15, 16	± 7%	27%	4	104,873	110,500	0.95	10.38%	4	113,108	110,500	1.02	11.98%
Major Arterial	21, 22, 23, 24, 25, 26, 27, 28, 29	± 15%	35%	50	565,981	631,912	0.9	19.38%	52	570,017	645,132	0.88	22.71%
Minor Arterial	31,32,33,34,35,36,37,38,39	± 15%	100%	6	8,113	8,392	0.97	23.65%	6	573,093	648,974	0.88	23.96%
Collector	41, 42, 43, 44, 45, 46, 47, 48, 49	± 25%	45%	14	55,259	76,040	0.73	45.06%	16	47,400	77,356	0.61	48.86%
Ramps	7x	± 25%	45%	10	65,412	68,900	0.95	30.63%	9	26,574	25,508	1.04	27.52%
Toll Facilities	9x	± 6%	45%	8	42,231	47,526	0.89	21.02%	8	28,145	30,800	0.91	20.98%
	Overall			92	841,869	943,270	0.89	21.64%	95	1,358,337	1,538,270	0.88	24.83%

Table 12: Facility Type Volume to Count Statistics - Subarea Level

5.2.6. 2045 NO-BUILD (RFP CONCEPT) NETWORK DEVELOPMENT, MODEL RUN, AND REASONABLENESS CHECKS:

As mentioned in **Section 4.0** of this report, the RFP concept will serve as the No-Build Alternative, and it will be used to compare the results from D/B concept (Build Alternative). In general, the development of the No-Build network is an important step in the design traffic development process. The No-Build network assumes existing plus committed conditions of the model's roadway network within the core area of influence of the study area. The core area of influence for this study is the I-75 and Collier Boulevard interchange and its upstream and downstream interchanges.

The 2045 LRTP network was distributed along with the official model package used as the basis for the No-Build network. This network was updated with the following changes: (a) the changes identified in the 2015 model validation process (b) within the core area of influence, the network was matched with the existing plus committed roadway network, including the RFP Concept for the interchange coding (c) for the rest of the background network links, the roadway network was matched with the MPO/FDOT cost feasible LRTP networks. The LRTP network checks were performed within the 2.0 mile subarea of the area of influence.

The 2045 No-Build Model run was performed and evaluated for reasonableness checks. In addition, checks were performed to evaluate the model volume growth against the 2045 TAZ data. Similarly, an annual growth rate comparison was performed between historical data, model volumes, the average of historic growth and model growth, and the county growth rate from socioeconomic data. The population projections used in the model are derived from the BEBR control totals. The mainline control point was determined based on the model validation south of I-75 and Golden Gate parkway interchange. An average of historic and model growth rates was used to develop the mainline forecast at this location. In addition, the ramp forecasts were used as a control to develop the mainline forecast. The reasonableness of the growth rates was considered in developing the ramp forecasts, and an average growth rate was used in cases where the historic or model growth rate

seemed unreasonable.

Appendix H includes the growth rate estimated based on the historical trend analysis using traffic counts obtained from the FTO information.

5.2.7. DESIGN TRAFFIC DEVELOPMENT FOR 2045 NO-BUILD ALTERNATIVE AADT DEVELOPMENT:

A prototype spreadsheet including the I-75/Collier Boulevard interchanges and its upstream and downstream interchanges was developed using formulas in EXCEL that can read model AADTs into labels for each of the prototype roadway links. The 2045 model volumes were extracted into the design traffic spreadsheet, using the coded location numbers in the network links. The model volumes were post-processed to account for the model validation differences. The model results were post-processed using the 2019 FDOT Project Traffic Forecasting Handbook and NCHRP 765 recommendations. Generally, post-processing was applied if the model volumes are different from the traffic counts +/- 10%. The resulting AADTs were balanced and rounded according to the FDOT Project traffic forecasting handbook guidelines.

5.2.8. DESIGN TRAFFIC DEVELOPMENT FOR 2045 NO-BUILD ALTERNATIVE (RFP CONCEPT) AND BUILD ALTERNATIVES (D/B CONCEPT) - AM/PM DDHV DEVELOPMENT:

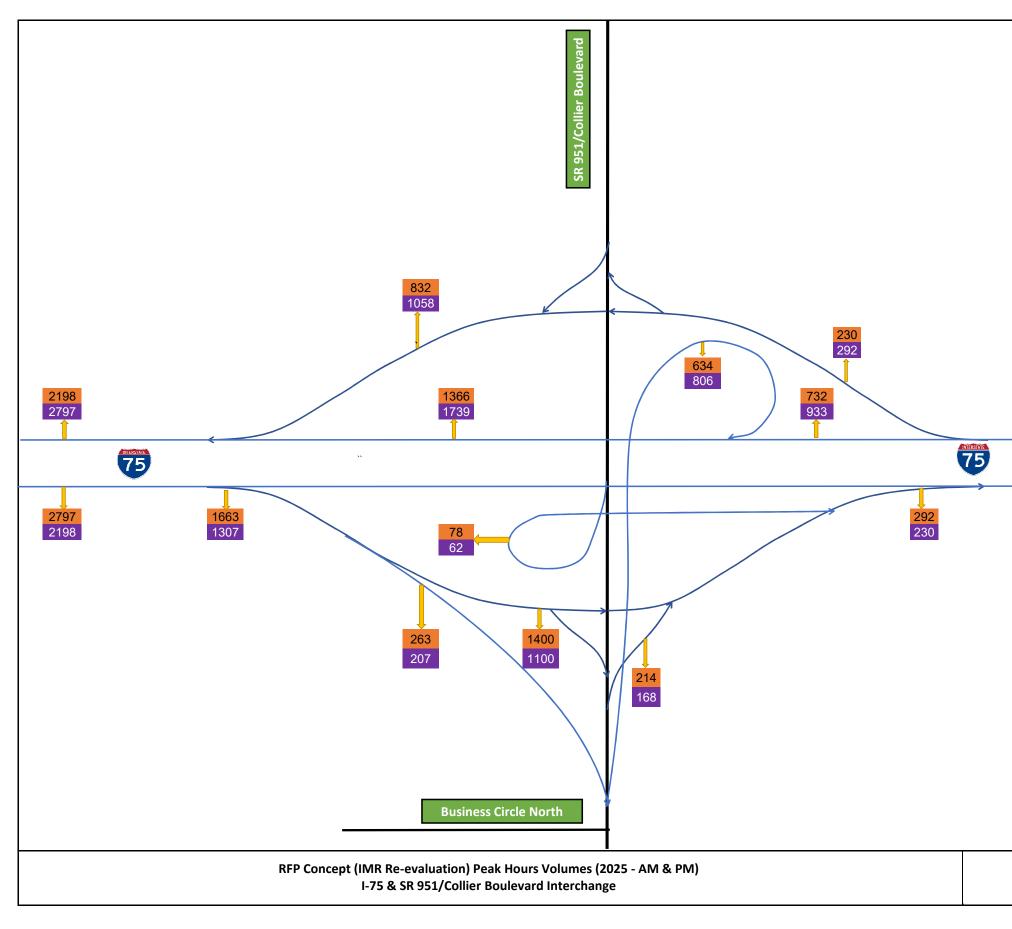
The corridor directional design hour volumes were developed using standard K and D factors, and balanced AADTs. As a reasonableness check, the standard K and D factors documented in the MLOU, and the factors developed using the FDOT Traffic Information Online (FTO) website published data were compared. The balanced AADTs developed in Section 5.2.7 were converted into AM/PM DDHVs using the K and D factors. Then, resulting DDHVs were balanced. The final products were submitted in Excel spreadsheet format.

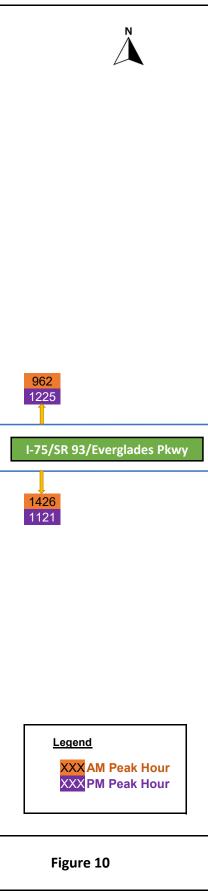
Once the No-Build volumes were approved, the Build Alternative volumes were developed by the redistribution method. Since there is only one Build Alternative (D/B Concept) which considers minor changes to the number of merge points along I-75 eastbound when compared to the No-Build Alternative, additional model runs for the Build Alternative were not required.

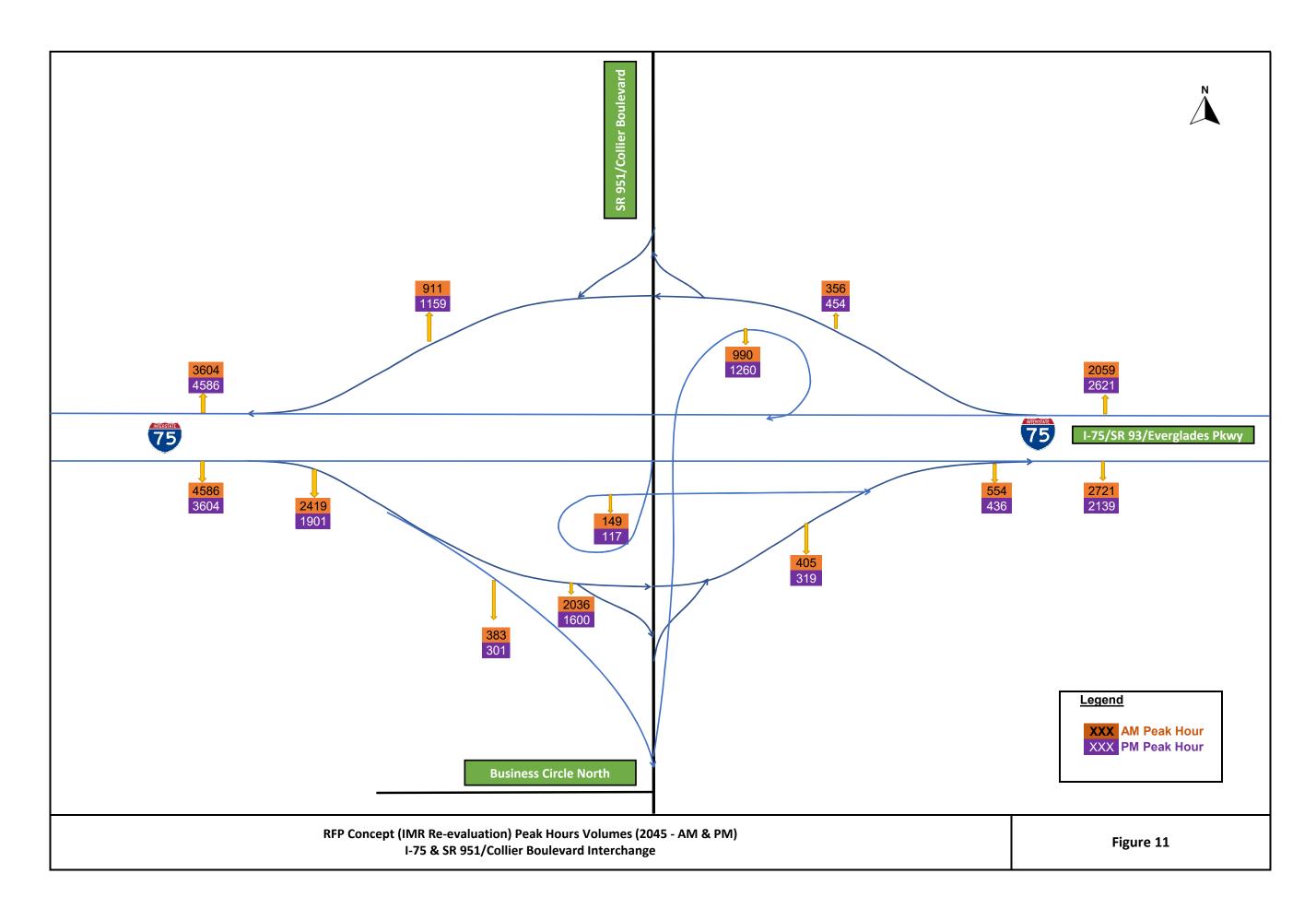
5.2.9. DESIGN TRAFFIC DEVELOPMENT FOR 2025 NO-BUILD ALTERNATIVE (RFP CONCEPT) AND BUILD ALTERNATIVES (D/B CONCEPT) - AM/PM DDHV DEVELOPMENT:

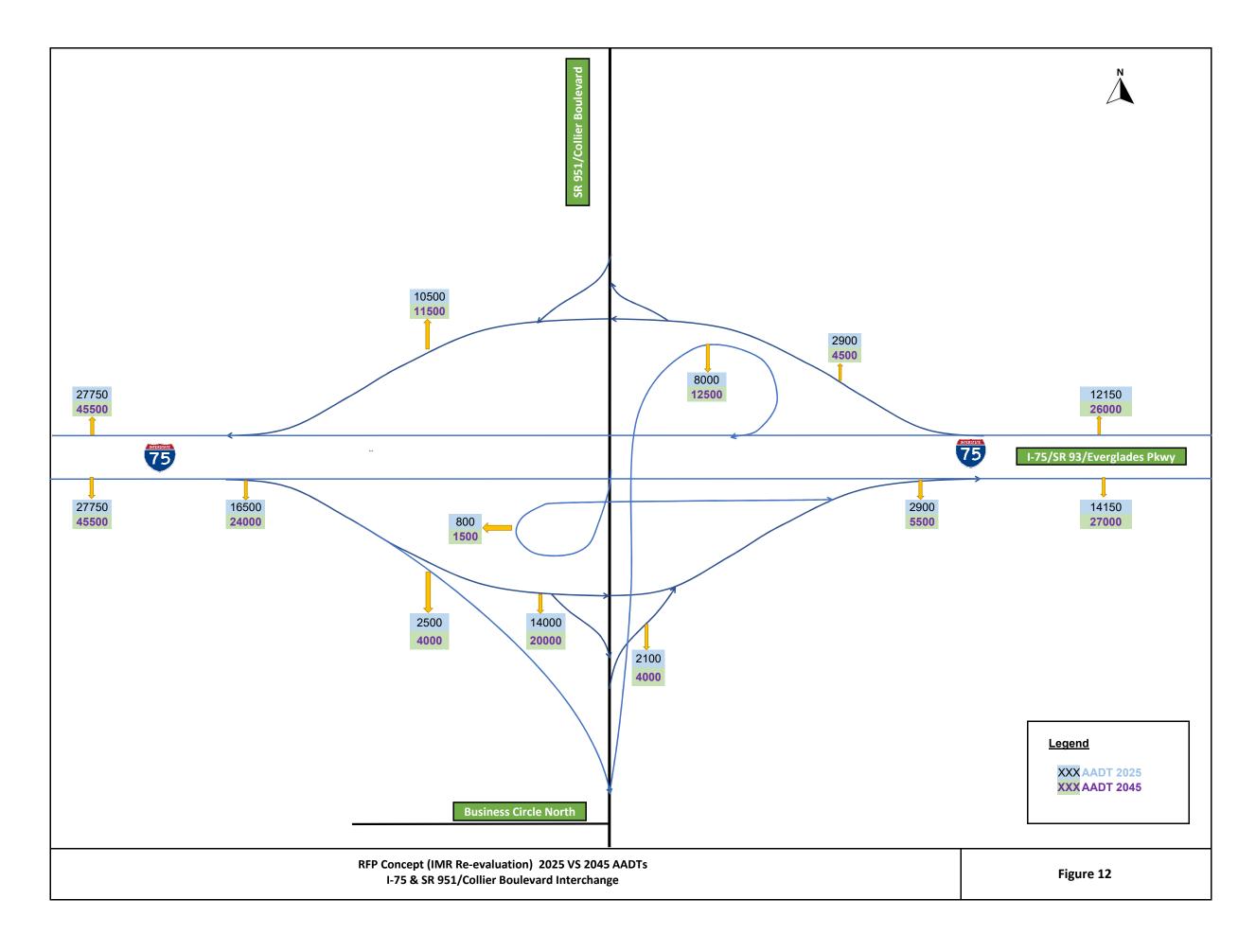
No-Build (RFP Concept) opening year traffic volumes were developed by linear interpolation between 2019 traffic volumes (obtained from FTO and I-75 Southwest Connect, FDOT District One Interstate Project – I-75 South Corridor Master Plan) and the estimated design year volumes (2045). For the development of the Build Alternative (D/B Concept) opening year volumes, the redistribution method was applied.

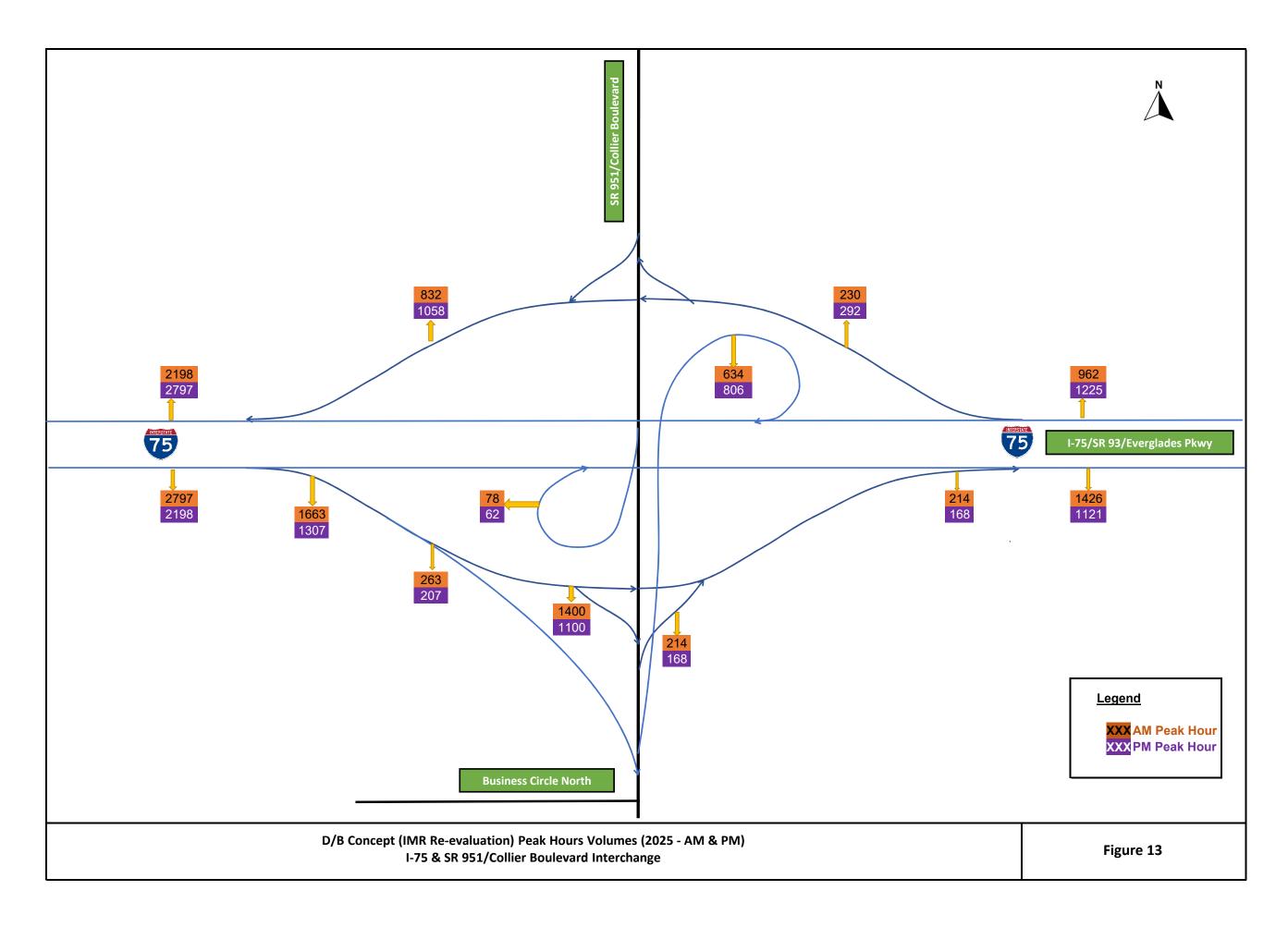
5.3. TRAFFIC FACTORS

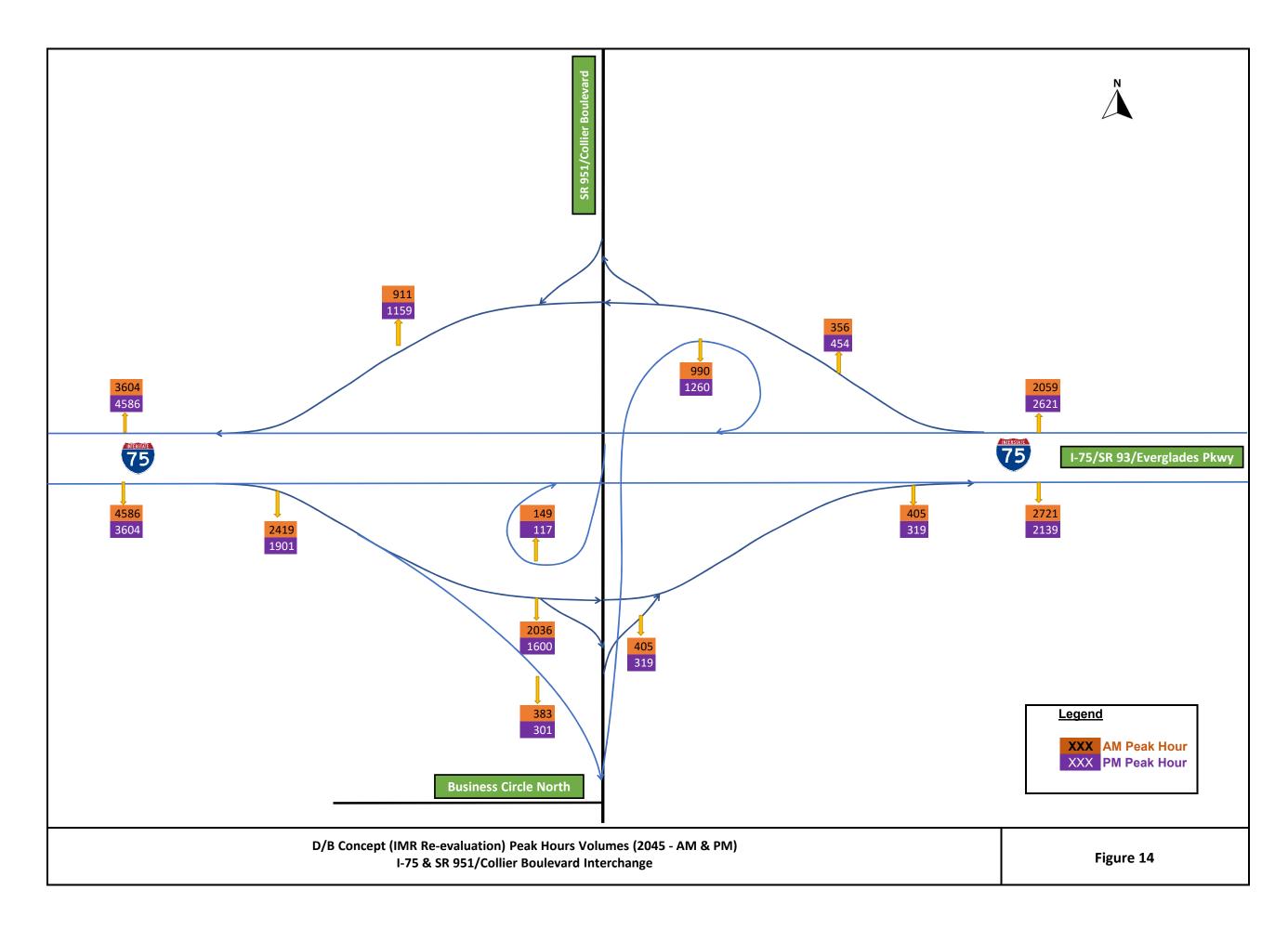

Traffic factors were determined based on information from the FDOT FTO Portable Traffic Monitoring Station (PTMS) No. 032000 (located west of SR 951). Similarly, ramp truck percentages were calculated for each ramp based on information obtained from the FDOT FTO platform. Based on this review, the five-year (2017-2021) average for each factor was calculated (see **Table 13**) and utilized for the traffic forecasting and related traffic operational analyses.

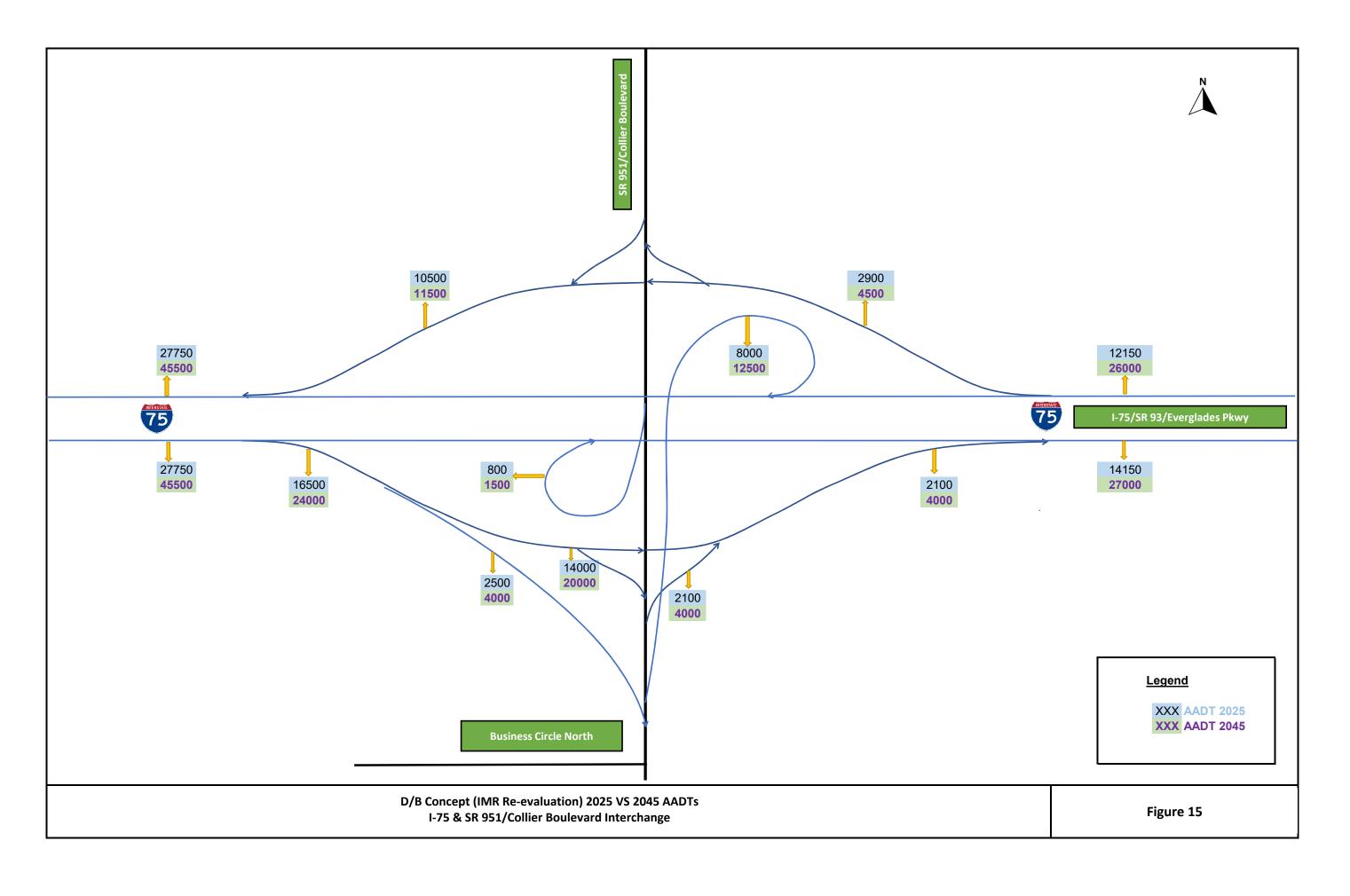

Table 13: Traffic Factors


Traffic Factors								
Roadway K D T _(Mainline) T _{f(Mainline)} T _(Ramp) T _{f(Ramp)} PHF								
I-75 / SR 93	9.00%	56%	12%	6%	7%	3.5%	0.95	


Figure 10 through **Figure 15** include the line diagrams summarizing the 2025 and 2045 volumes for the RFP Concept and D/B Alternatives.


This section was intentionally left blank.





6. TRAFFIC OPERATIONAL ANALYSIS

As mentioned in Section 2.5 of this IMR Re-evaluation, the traffic operational analysis focused on the freeway segments (basic and merge/diverge areas) in the vicinity of the interchange of I-75 at Collier Boulevard. The segments of I-75 to the east and west of the I-75 interchange at Collier Boulevard were analyzed using the procedure and criteria outlined in Chapter 10 (Freeway Facilities) of the Highway Capacity Manual 7th Edition (HCM 7) and its respective module included in the Highway Capacity Software 2023 (HCS 2023 version 8.2). This methodology is consistent with FDOT IARUG.

HCS provides an estimate of the Level of Service (LOS) based on density (pc/mile/lane) as the measure of effectiveness (MOE) as per the HCM methodology. Density was the primary MOE to evaluate basic mainline freeway segments as well as the merge/diverge areas. Speed was also summarized and compared between the RFP Concept and the D/B Concept.

The HCM utilizes density to relate the traffic operations to a given LOS. The LOS grading scale ranges from LOS A to LOS F, where LOS A represents under-saturated/free flow conditions and LOS F represents over-saturated/congestion. The following sections summarize the traffic operations analysis conducted for both alternatives for the opening year (2025) and the design year 2045 (Section 8.2) for the morning and afternoon peak hours. The analysis was conducted for each direction of travel along the I-75 mainline.

Each direction was segmented based on the characteristics of the portion of I-75 being analyzed. **Table 14** summarizes the number of segments in which the I-75 mainline (per direction) was divided. The limits of the segments are described in the tables summarizing the results of the HCS analysis conducted. HCS output reports for future operational analysis for each alternative are provided in **Appendix I**.

	Direction of Travel						
Alternative	Eastbound Westbour						
RFP Concept	5	6					
D/B Concept	8	7					

Table 14: Number of Segments along I-75 used for the Freeway Operational Analysis

6.1. OPENING YEAR (2025) OPERATING CONDITIONS

This section summarizes the HCS results for the AM and PM peak hour analysis conducted for the opening year (2025). **Table 15** and **Table 16** summarize results for the RFP Concept and the D/B Concept, respectively. Similarly, **Table 17** summarizes the overall facility results of the two alternatives. The detailed traffic analysis output reports are included in **Appendix I**.

Based on the results of the operational analysis, both alternatives are expected to operate at acceptable LOS for the year 2025 and they meet the FDOT LOS target of D per the State Highway System, Policy No. 000-525-006, effective April 19, 2017. Although both alternatives are expected to operate satisfactorily, the D/B alternative seems to operate slightly better than the RFP alternative in certain portions of the I-75 mainline. This results in an overall lower density in the eastbound direction of travel (for both peak hours), as seen in **Table 17.** In the westbound direction, results for both alternatives show the same density. In the case of speed and travel time, both alternatives operate very similarly.

				A	M Peak Hou	ır	Р	M Peak Hou	ır
Direction of Travel	Segment No.	Segment Description	Segment Type	Speed (mi/h)	Density (pc/mi/ln)	LOS	Speed (mi/h)	Density (pc/mi/ln)	LOS
	1	From CR 886 SB On Ramp to SR 951 EB Off Ramp	Basic Freeway Segment	75.4	13.8	В	75.4	10.8	А
	2	SR 951 EB Off Ramp	Diverge Ramp Freeway Segment	60.2	17.3	В	61.2	13.4	А
EB	3	From SR 951 EB Off Ramp to SR 951 EB On Ramp	Basic Freeway Segment	75.3	8.4	А	75.3	6.6	А
	4	SR 951 EB On Ramp	Merge Ramp Freeway Segment	67.0	11.8	А	67.2	9.3	А
	5	From SR 951 EB On Ramp to Everglades Blvd EB Off Ramp	Basic Freeway Segment	75.4	10.6	A	75.4	8.3	A
	1	Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp	Basic Freeway Segment	75.4	7.1	А	75.4	9.1	A
	2	SR 951 WB Off Ramp	Diverge Ramp Freeway Segment	60.3	8.9	В	60.1	11.4	В
WB	3	SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	Basic Freeway Segment	75.0	5.4	А	74.9	6.9	A
	4	SR 951 WB On Ramp Loop	Merge Ramp Freeway Segment	75.4	6.7	А	75.4	8.5	А
	5	SR 951 WB On Ramp	Merge Ramp Freeway Segment	68.6	11.8	В	68.0	15.2	В
	6	SR 951 WB On Ramp to CR 886 NB Off Ramp	Basic Freeway Segment	75.4	10.8	A	75.4	13.8	В

Table 15: Summary of 2025 Peak Hour RFP Freeway Operating Conditions

Interchange Modification Report (IMR) Re-evaluation

I-75/SR 93 at SR 951/Collier Boulevard Interchange

				A	M Peak Hou	ur	Р	M Peak Hou	ır
Direction of Travel	Segment No.	Segment Description	Segment Type	Speed (mi/h)	Density (pc/mi/ln)	LOS	Speed (mi/h)	Density (pc/mi/ln)	LOS
	1	From CR 886 SB On Ramp to SR 951 EB Off Ramp	Basic Freeway Segment	75.4	13.8	В	75.4	10.5	А
	2	SR 951 EB Off Ramp	Diverge Ramp Freeway Segment	60.2	17.3	В	61.2	13.4	A
	3	From SR 951 EB Off Ramp to SR 951 EB On Ramp	Basic Freeway Segment	74.4	8.4	A	74.5	6.6	A
EB	4	SR 951 EB On Ramp Loop	Merge Ramp Freeway Segment	75.3	6.0	А	75.3	4.7	А
ЕВ	5	From SR 951 EB On Ramp Loop to SR 951 EB On Ramp	Basic Freeway Segment	75.4	6.0	A	75.4	4.7	А
	6	SR 951 EB On Ramp	Merge Ramp Freeway Segment	69.9	7.6	А	70.0	5.9	А
	7	From SR 951 EB On Ramp to EB Lane Drop	Basic Freeway Segment	74.6	7.0	А	74.6	5.5	А
	8	From EB Lane Drop to Everglades Blvd EB Off Ramp	Basic Freeway Segment	75.4	10.6	A	75.4	8.3	А
					r			1	
	1	From Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp	Basic Freeway Segment	75.4	7.1	А	75.4	9.1	А
	2	SR 951 WB Off Ramp	Diverge Ramp Freeway Segment	60.3	8.9	В	60.1	11.4	В
	3	From SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	Basic Freeway Segment	74.3	5.4	A	74.3	6.9	A
WB	4	SR 951 WB On Ramp Loop	Merge Ramp Freeway Segment	75.3	6.7	А	75.3	8.5	А
	5	From SR 951 WB On Ramp Loop to SR 951 WB On Ramp	Basic Freeway Segment	75.4	6.7	А	75.4	8.6	А
	6	SR 951 WB On Ramp	Merge Ramp Freeway Segment	68.6	11.8	В	68.1	15.1	В
	7	From SR 951 WB On Ramp to CR 886 NB Off Ramp	Basic Freeway Segment	75.4	10.8	A	75.4	13.8	В

Table 16: Summary of 2025 Peak Hour D/B Freeway Operating Conditions

			AM Peak	Hour		PM Peak Hour					
Direction of Travel	Alternative	Space Mean Speed (mi/h)	Average Travel Time (min)	Average Density (pc/mi/ln)	LOS	Space Mean Speed (mi/h)	Average Travel Time (min)	Average Density (pc/mi/ln)	LOS		
EB	RFP	74.5	10.0	11.6	В	74.6	10.0	9.1	А		
ED	D/B	74.6	10.0	11.3	В	74.6	10.0	8.8	А		
						-					
WB	RFP	74.7	9.6	8.2	А	74.7	9.6	10.5	А		
VVB	D/B	74.7	9.6	8.2	А	74.7	9.6	10.5	А		

Table 17: Summary of 2025 Peak Hour RFP and D/B Freeway Facility Operating Conditions

6.2. DESIGN YEAR (2045) OPERATING CONDITIONS

This section summarizes the HCS results for the AM and PM peak hour analysis conducted for the design year (2045). **Table 18** and **Table 19** summarize results for the RFP Concept and the D/B Concept, respectively. Similarly, **Table 20** summarizes the overall facility results of the two alternatives. The detailed traffic analysis output reports are included in **Appendix I**.

Based on the results of the operational analysis, both alternatives are expected to operate at acceptable LOS for the year 2045 and they meet the FDOT LOS target of D per the State Highway System, Policy No. 000-525-006, effective April 19, 2017. Although both alternatives are expected to operate satisfactorily, the D/B alternative seems to operate slightly better than the RFP alternative in certain portions of the I-75 mainline. This results in an overall lower density in the eastbound direction of travel (for both peak hours), as seen in **Table 20.** In the westbound direction, results for both alternatives show the same density. In the case of speed and travel time, both alternatives operate very similarly.

Table 18: Summary of 2045 Peak Hour RFP Freeway Operating Conditions

				А	M Peak Hou	ur	Р	M Peak Hou	ır
Direction of Travel	Segment No.	Segment Description	Segment Type	Speed (mi/h)	Density (pc/mi/ln)	LOS	Speed (mi/h)	Density (pc/mi/ln)	LOS
	1	From CR 886 SB On Ramp to SR 951 EB Off Ramp	Basic Freeway Segment	69.7	24.5	С	74.0	18.1	С
	2	SR 951 EB Off Ramp	Diverge Ramp Freeway Segment	58.6	29.1	С	60.3	22.2	В
EB	3	From SR 951 EB Off Ramp to SR 951 EB On Ramp	Basic Freeway Segment	74.8	16.2	В	75.3	12.6	В
	4	SR 951 EB On Ramp	Merge Ramp Freeway Segment	64.9	23.3	С	66.2	17.9	В
	5	From SR 951 EB On Ramp to Everglades Blvd EB Off Ramp	Basic Freeway Segment	72.3	21.0	С	74.9	15.9	В
	1	Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp	Basic Freeway Segment	75.1	15.3	В	72.9	20.1	с
	2	SR 951 WB Off Ramp	Diverge Ramp Freeway Segment	59.9	19.2	С	59.6	24.5	С
WB	3	SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	Basic Freeway Segment	74.9	12.6	В	74.8	16.2	В
	4	SR 951 WB On Ramp Loop	Merge Ramp Freeway Segment	75.4	13.2	В	74.5	17.0	В
	5	SR 951 WB On Ramp	Merge Ramp Freeway Segment	67.4	19.8	В	65.2	26.0	С
	6	SR 951 WB On Ramp to CR 886 NB Off Ramp	Basic Freeway Segment	74.0	18.1	С	69.7	24.5	С

Interchange Modification Report (IMR) Re-evaluation

I-75/SR 93 at SR 951/Collier Boulevard Interchange

				A	M Peak Ho	ur	Р	M Peak Hou	ır
Direction of Travel	Segment No.	Segment Description	Segment Type	Speed (mi/h)	Density (pc/mi/ln)	LOS	Speed (mi/h)	Density (pc/mi/ln)	LOS
	1	From CR 886 SB On Ramp to SR 951 EB Off Ramp	Basic Freeway Segment	69.7	24.5	С	74.0	18.1	С
	2	SR 951 EB Off Ramp	Diverge Ramp Freeway Segment	58.6	29.1	С	60.3	22.2	В
	3	From SR 951 EB Off Ramp to SR 951 EB On Ramp	Basic Freeway Segment	74.3	16.2	В	74.4	12.6	В
EB	4	SR 951 EB On Ramp Loop	Merge Ramp Freeway Segment	75.3	11.4	В	75.3	9.0	А
LD	5	From SR 951 EB On Ramp Loop to SR 951 EB On Ramp	Basic Freeway Segment	75.4	11.4	В	75.4	9.0	A
	6	SR 951 EB On Ramp	Merge Ramp Freeway Segment	68.9	14.6	В	69.4	11.4	А
	7	From SR 951 EB On Ramp to EB Lane Drop	Basic Freeway Segment	74.4	13.4	В	74.5	10.6	А
	8	From EB Lane Drop to Everglades Blvd EB Off Ramp	Basic Freeway Segment	72.3	21.0	С	74.9	15.9	В
					1			1	
	1	From Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp	Basic Freeway Segment	75.1	15.3	В	72.9	20.1	С
	2	SR 951 WB Off Ramp	Diverge Ramp Freeway Segment	59.9	19.2	С	59.6	24.5	С
	3	From SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	Basic Freeway Segment	74.2	12.6	В	74.2	16.2	В
WB	4	SR 951 WB On Ramp Loop	Merge Ramp Freeway Segment	75.3	13.2	В	74.5	17.0	В
	5	From SR 951 WB On Ramp Loop to SR 951 WB On Ramp	Basic Freeway Segment	75.4	13.3	В	74.5	17.1	В
	6	SR 951 WB On Ramp	Merge Ramp Freeway Segment	67.4	19.8	В	65.2	26.0	С
	7	From SR 951 WB On Ramp to CR 886 NB Off Ramp	Basic Freeway Segment	74.0	18.1	С	69.7	24.5	С

Table 19: Summary of 2045 Peak Hour D/B Freeway Operating Conditions

Table 20: Summary of 2045 Peak Hour RFP and D/B Freeway Facility Operating Conditions

			AM Peak	Hour		PM Peak Hour				
Direction of Travel	Alternative	Space Mean Speed (mi/h)	Average Travel Time (min)	Average Density (pc/mi/ln)	LOS	Space Mean Speed (mi/h)	Average Travel Time (min)	Average Density (pc/mi/ln)	LOS	
EB	RFP	70.9	10.5	21.9	С	73.9	10.1	16.5	В	
CD	D/B	71.0	10.5	21.3	С	73.9	10.0	16.1	В	
						-				
	RFP	74.1	9.6	16.1	В	71.4	10.0	21.3	С	
WB	D/B	74.1	9.6	16.1	В	71.4	10.0	21.3	С	

This section was intentionally left blank.

7. SAFETY ANALYSIS

The safety analysis focused on the freeway segments (basic and merge/diverge) in the vicinity of the interchange of I-75 at SR 951. The segments along the I-75 freeway mainline were analyzed using the Highway Safety Manual 2010 - 1st Edition (HSM 1st Edition) methodologies by means of the Enhanced Interchange Safety Analysis Tool (ISATe). The safety analysis was consistent with the procedure presented in the 2022 IARUG and the IARUG Safety Analysis Guidance.

The HSM methodologies allowed to quantitatively assess the geometric (where applicable) for the roadway segments in the study area.

The most recent five years of crash data (2017-2021) were obtained through FDOT D1 and were downloaded from various sources including FDOT's CARS database, FDOT SSOGIS database, and Signal Four Data Analytics.

7.1. HISTORICAL CRASH ANALYSIS

The historical crash analysis was initiated by evaluating the safety conditions for the segment of I-75 between the Everglades Boulevard interchange (MP 41.520) up to just east of the interchange with CR 886 (MP 43.349).

A more detailed crash analysis was conducted for the segments of I-75 directly adjacent to the interchange with SR 951/Collier Boulevard. The limits were picked as MP 49.53, approximately 3,000 feet east of the subject interchange and (MP 51.04), approximately 1,500 feet west. The limits used were selected to cover the segments along I-75 where the RFP Concept and D/B Concept were proposing changes.

The purpose of these two analyses was to determine if the segments of I-75 immediately adjacent to the interchange with SR 951/Collier Boulevard will result in different crash frequencies. Crash summary worksheets are included in **Appendix J**.

7.1.1. CRASH ANALYSIS BETWEEN EVERGLADES BOULEVARD AND EAST OF THE INTERCHANGE WITH CR 886

Table 20 summarizes the results for the crashes occurring along I-75 between Everglades Boulevard interchange (MP 41.520) and just east of CR 886 interchange (MP 43.349), a distance of approximately 1.829 miles. Within this segment a total of 379 crashes were reported. As seen in **Table 20**, the number of crashes per year were as follows: 70 crashes in 2017, 84 crashes in 2018, 67 crashes in 2019, 63 crashes in 2020, and 95 crashes in 2021. Overall, the number of crashes seems to be relatively constant through the years, except for the year 2021 where an increase of about 33% (when compared to the previous year) was calculated.

Interchange Modification Report (IMR) Re-evaluation

I-75/SR 93 at SR 951/Collier Boulevard Interchange

The top three leading crash types consisted of crashes with Fixed Object (28%), Sideswipe with (22%), and Rear End (21%) crashes. Additionally, there was 1 (<1%) Pedestrian and no Bicycle related crashes, during the referenced five-year period. Based on crash severity, 271 (72%) were Property Damage Only crashes, 103 (27%) were Injury crashes, and 5 (1%) were Fatal crashes. The detailed police reports of the Fatal and Pedestrian type crashes are attached in **Appendix J**. There were 144 (38%) Dark/Dusk/Dawn crashes reported and there were 67 (18%) crashes reported to have occurred under Wet/Slippery pavement conditions.

Table 21: Entire Study Corridor Crash Statistics

•	eway Limits from NB		Numb	er of Cı	rashes			Mean	
	f Ramp to EB/WB Blvd On/Off Ramps			Year			5 Year Total	Crashes Per	%
	ot with No Expected es Available	2017	2018	2019	2020	2021	Crashes	Year	
CRASH TYPE	Rear End	12	20	12	16	18	78	15.60	20.6%
	Head On	0	0	0	0	0	0	0.00	0.0%
	Angle	1	4	1	5	6	17	3.40	4.5%
	Left Turn	0	0	0	0	0	0	0.00	0.0%
	Right Turn	1	0	0	0	0	1	0.20	0.3%
	Sideswipe	15	17	22	9	19	82	16.40	21.6%
	Backed Into	0	0	0	0	0	0	0.00	0.0%
	Pedestrian	0	0	0	1	0	1	0.20	0.3%
	Bicycle	0	0	0	0	0	0	0.00	0.0%
	Fixed Object	14	26	21	16	28	105	21.00	27.7%
	Other Non-Collisions	9	7	0	3	7	26	5.20	6.9%
	Overturn/Rollover	9	2	4	2	3	20	4.00	5.3%
	Others	9	8	7	11	14	49	9.80	12.9%
	Total Crashes	70	84	67	63	95	379	75.80	100.0%
SEVERITY	PDO Crashes	43	65	49	47	67	271	54.20	71.5%
	Fatal Crashes	1	1	0	1	2	5	1.00	1.3%
	Injury Crashes	26	18	18	15	26	103	20.60	27.2%
LIGHTING	Daylight	44	53	44	36	58	235	47.00	62.0%
CONDITIONS	Dusk	0	3	1	2	3	9	1.80	2.4%
	Dawn	3	0	1	2	2	8	1.60	2.1%
	Dark	23	28	21	23	32	127	25.40	33.5%
	Unknown	0	0	0	0	0	0	0.00	0.0%
SURFACE	Dry	57	70	58	55	72	312	62.40	82.3%
CONDITIONS	Wet	13	14	9	8	23	67	13.40	17.7%
	Others	0	0	0	0	0	0	0.00	0.0%

7.1.2. STUDY INTERCHANGE

Table 22 summarizes the results of the crash analysis conducted for the I-75 segment between MP 49.53 (3,000 feet east of the interchange with SR 951/Collier Boulevard) and MP 51.04 (about 1,500 feet west of the subject interchange). Crash data and detailed police reports within the immediate area surrounding the study interchange were reviewed and crashes occurring outside the I-75 mainline study limits were removed. Based on a review of the combined crash data, a total of 57 crashes were reported within the immediate limits of the study interchange with 13 crashes in 2017, 13 crashes in 2018, 12 crashes in 2019, 2 crashes in 2020, and 17 crashes in 2021. The average crash frequency for the study interchange was approximately 13.75 crashes per year with the number of crashes in 2020 being excluded from the calculation due to being an outlier. Crash statistics, such as the existing yearly crash frequency, were compared to the future yearly crash frequency (obtained from the HSM safety analysis in **Section 7.2** of this report) to ensure that the predicted number of crashes are reasonable and accurate. The top three leading crash types consisted of Sideswipe with 17 (30%) crashes, Rear End with 10 (18%) crashes, and Fixed Objects with 9 (16%) crashes. Based on crash severity, 42 (74%) were Property Damage Only crashes, reported and 15 (26%) crashes occurring under Wet pavement conditions.

Table 22: Immediate Interchange Limits Crash Statistics

I-75 and SI	8951 Interchange		Numb	er of Cı	rashes			Mean	%
Imme	ediate Limits			Year			5 Year Total	Crashes Per	
	ot with No Expected es Available	2017	2018	2019	2020	2021	Crashes	Year	
CRASH TYPE	Rear End	0	3	3	0	4	10	2.00	17.5%
	Head On	0	0	0	0		0	0.00	0.0%
	Angle	0	0	1	0	2	3	0.60	5.3%
	Left Turn		0	0	0	0	0	0.00	0.0%
	Right Turn	1	0	0	0	0	1	0.20	1.8%
	Sideswipe	7	4	2	0	4	17	3.40	29.8%
	Backed Into	0	0	0	0	0	0	0.00	0.0%
	Pedestrian	0	0	0	0	0	0	0.00	0.0%
	Bicycle	0	0	0	0		0	0.00	0.0%
	Fixed Object	0	3	3	0	3	9	1.80	15.8%
	Other Non-Collisions	3	1	0	0	1	5	1.00	8.8%
	Overturn/Rollover	2	0	0	1		4	0.80	7.0%
	Others	0	2	3	1	2	8	1.60	14.0%
	Total Crashes	13	13	12	2	17	57	11.40	100.0%
SEVERITY	PDO Crashes	11	11	9	2	9	42	8.40	73.7%
	Fatal Crashes	0	0	0	0	0	0	0.00	0.0%
	Injury Crashes	2	2	3	0	8	15	3.00	26.3%
LIGHTING	Daylight	8	11	9	2	13	43	8.60	75.4%
CONDITIONS	Dusk	0	0	1	0	0	1	0.20	1.8%
	Dawn	1	0	0	0	0	1	0.20	1.8%
	Dark	4	2	2	0	4	12	2.40	21.1%
	Unknown		0	0	0	0	0	0.00	0.0%
SURFACE	Dry	12	11	8	2	9	42	8.40	73.7%
CONDITIONS	Wet	1	2	4	0	8	15	3.00	26.3%
	Others	0	0	0	0	0	0	0.00	0.0%

7.2. PREDICTIVE METHOD CRASH ANALYSIS

A future conditions safety analysis was performed to compare the predicted 2045 future freeway safety performance of the RFP and D/B Concepts. The safety analysis followed the 2010 HSM (and corresponding 2014 freeways supplement), and procedures outlined in the FDOT IARUG and the FDOT Safety Crash Data Guidance. The future safety analysis utilizes ISATe as the software tool, which follows the HSM methodologies, and estimates the predicted average crash frequency for specific design elements part of the typical sections. The following sections will outline the methodology, considerations and limitations, and the segmented future RFP and D/B freeway alternatives with respective results.

7.2.1. I-75 FREEWAY SAFETY ANALYSIS METHODOLOGY

The safety analysis methodology outlined in the HSM 2010 predicts the number of crashes along a specific roadway facility by applying the HSM Safety Performance Functions (SPF) on roadway segments with similar characteristics and design elements. Proper segmentation of the roadway facility is key to develop an accurate analysis. The HSM methodology predicts the number of crashes based on the extent that each design element deviates from an "ideal" or base condition. Crash Modification Factors (CMF) are applied to the SPFs to adjust the estimates of the predicted number of crashes in each segment. The segmentation process produces a set of disaggregated segments with varying lengths, each of which is homogeneous with respect to characteristics such as traffic volumes, key geometrics design features, and traffic control features as defined in the ISATe segmentation criteria.

Important considerations, limitations, and assumptions used in the modeling procedure are summarized below:

- The ISATe safety analysis focused on the same limits assumed for the crash analysis conducted in the vicinity of the interchange of I-75 with SR 951/Collier Boulevard. Using the same limits as the historical crash analysis facilitates the comparison between the existing and expected future conditions crash frequency. In addition, RFP and D/B Concepts do not consider design changes beyond those limits. Hence, segments outside of these limits are not expected to experience a change in safety performances.
- As suggested by the HSM methodology, the default calibration factor was used since no specific field data was available. Therefore, the analysis was based on the nationwide characteristics of an average segment.
- A clear zone width of 30 feet was used for all segments which were within the influence area and in close proximity to barriers (concrete, guardrail, etc).

• Some segment lengths resulted in distances shorter than the ones recommended by HSM methodology (which are between 0.1 and 1.0 miles). However, the overall freeway design meets FDOT and/or AASHTO design criteria.

7.3. SUMMARY OF I-75 RFP AND D/B FREEWAY SEGMENTS

The results of the safety analysis per segment for the RFP Concept are presented in **Table 23** and the results of the D/B Concept are presented in **Table 24**. Similarly, the overall facility comparison between the two alternatives is summarized in **Table 25**. The detailed operational results are included in **Appendix J**.

Overall, based on the results of the safety analysis for the 2045 design year, the RFP and D/B concepts are expected to have 18.9 and 19.6 crashes/year, respectively. In other words, the crash frequency for the D/B Concept is expected to report about less than one crash/year more than the RFP Concept (0.7 crashes/year more). The probability of this 0.7 crash being categorized as high severity crash is about 2%, the same probability is expected for the RFP Concept.

Additionally, based on a review of the historical crash data (Section 7.1), the existing crash frequency (with the diamond interchange configuration) is about 13.75 crashes/year. The predicted crash frequency for the D/B Concept is about 19.6 crashes/year which represents an increase of about 5.85 crashes/year, while the increase for the RFP Concept is about 5.15 crashes/year. Therefore, the slight increase in the predicted number of crashes for the D/B Concept seems reasonable. The D/B concepts presents two merge points along the eastbound direction. One merge point relates to the new southbound to eastbound loop ramp and the second merge point relates to northbound to eastbound entrance ramp. The RFP Concept only presents one merge point in the eastbound direction. The difference in the number of entrance ramps between D/B Concept and the RFP Concept may be related to a higher number of lane changing maneuvers (along the 1-75 mainline) and therefore, slightly higher probabilities for crashes to occur. However, as it is indicated by the summary presented in Table 25, the increase in number of crashes is almost insignificant, and it is only evident in the minor injury and property damage only crashes.

Although the D/B Concept presents two merge points along the eastbound direction and the RFP Concept only one, it has to be mentioned that both entrance ramps (for the D/B Concept) will provide acceleration lanes along the I-75 mainline. These acceleration lanes will allow drivers to enter the freeway without immediately performing lane changing maneuvers. The length of the auxiliary lanes will provide enough distance for drivers to accelerate and gain the appropriate merging speed with the I-75 freeway mainline traffic. Thus, reducing the probabilities of collisions occurring in high traffic turbulence areas such as ramps.

Table 23: Summary of 2045 RFP Freeway Safety Conditions

			-	Crash Severity		-	
Segment		(К)	(A)	(B)	(C)	(0)	
Segment No.	Segment Description	Fatal	Incapacitating Injury	Non- Incapacitating Injury	Minor Injury	Property Damage Only	Total(s)
1	Start (STA 245+00) to SR 951 EB On Ramp	0.0	0.1	0.3	0.9	2.3	3.6
2	SR 951 EB On Ramp to SR 951 WB Off Ramp	0.0	0.0	0.1	0.4	1.1	1.7
3	SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	0.0	0.1	0.3	1.1	2.5	4.1
4	SR 951 WB On Ramp Loop to SR 951 WB On Ramp	0.0	0.0	0.1	0.4	1.1	1.7
5	SR 951 WB On Ramp to SR 951 EB Off Ramp	0.0	0.0	0.1	0.2	0.6	0.9
6	SR 951 EB Off Ramp to END (STA 330+00)	0.0	0.1	0.5	1.7	4.7	7.0
	Total(s)	0.1	0.3	1.4	4.8	12.3	18.9

Table 24: Summary of 2045 D/B Freeway Safety Conditions

				Crash Severity			
Segment		(К)	(A)	(B)	(C)	(0)	
No.	Segment Description	Fatal	Incapacitating Injury	Non- Incapacitating Injury	Minor Injury	Property Damage Only	Total(s)
1	START (STA 245+00) to I-75 EB Lane Drop	0.0	0.0	0.1	0.2	0.6	0.9
2	I-75 EB Lane Drop to SR 951 EB On & WB Off Ramps	0.0	0.1	0.3	1.1	2.8	4.4
3	SR 951 EB On & WB Off Ramps to SR 951 WB On Ramp Loop	0.0	0.0	0.2	0.6	1.3	2.1
4	SR 951 WB On Ramp Loop to SR 951 EB On Ramp Loop	0.0	0.0	0.1	0.4	0.8	1.3
5	SR 951 EB On Ramp Loop to SR 951 WB On Ramp	0.0	0.0	0.2	0.9	2.2	3.4
6	SR 951 WB On Ramp to SR 951 EB Off Ramp	0.0	0.0	0.0	0.2	0.4	0.7
7	SR 951 EB Off Ramp to END (STA 330+00)	0.0	0.1	0.5	1.7	4.6	6.8
	Total(s)	0.1	0.3	1.4	5.0	12.7	19.6

Table 25: Summary of 2045 RFP and D/B Freeway Safety Conditions

			Crash Severity			
	(К)	(A)	(B)	(C)	(O)	
Alternative	Fatal	Incapacitating Injury	Non- Incapacitating Injury	Minor Injury	Property Damage Only	Total
RFP	0.1	0.3	1.4	4.8	12.3	18.9
D/B	0.1	0.3	1.4	5.0	12.7	19.6

This section was intentionally left blank.

8. ANTICIPATED DESIGN VARIATIONS

Both the RFP and D/B alternatives will require identical design variations for several roadway elements, as outlined

in Table 26 below. Table 27 and Table 28 describe details of the Design Variations

Table 26: RFP and D/B Alternatives Design Variations

Location	Design Variation	From	То
Ramp A-3	Horizontal Curve Radius	STA 634+98.21	STA 645+63.14
	Horizontal Curve Radius	STA 932+83.55	STA 942+83.56
Ramp C-2		STA 924+24.71	STA 928+08.46
Ramp C-2	Shoulder Width	STA 928+08.46	STA 933+02.80
		STA 933+02.80	STA 933+35.29
Shared Use Path		STA 155+66.60	155+94.53
(Right Side)	Horizontal Clearence	STA 155+94.53	STA 158+82.37
(Right Side)		STA 158+82.37	STA 159+09.21
Chanad Use Dath		STA 156+80.92	156+87.80
Shared Use Path	Horizontal Clearence	STA 156+87.80	STA 158+82.76
(Left Side)		STA 158+82.76	STA 159+45.88

Table 27: Horizontal Curve Radius Summary

Ramp Name	Curve Name	Design Speed (mph)	Begin Limits	End Limits	FDM Required Curve Radius (ft)	AASHTO Required Curve Radius (ft)	Provided Curve Radius (ft)
A-3	A3-3	30	STA 634+50.00	STA 645+65.00	239	200	200
C-2	C2-4	30	STA 933+17.00	STA 943+90.00	239	200	200

Table 28: Ramp C2 Shoulder Width Summary

Begin Limits	End Limits	Length (ft)	Full Inside Shoulder Width (Paved & Adjacent to Barrier Wall, ft)
STA 923+54.65	STA 928+08.23	435.58	Varies (3 to 6)
STA 928+08.23	STA 933+20.81	512.58	3
STA 933+20.81	STA 933+53.30	32.49	Varies (3 to 6)

9. ENVIRONMENTAL IMPACTS

The review of potential environmental impacts was performed and completed for the RFP Concept during the previously mentioned PD&E project. No additional environmental impacts are expected to potentially implement the D/B Concept. FDOT has already purchased mitigation credits which cover 100% of the wetland area within the interchange infields. It is worth noting that the 404 Permit has not been formally issued yet due to a modification to the mitigation bank from which the credits are being processed. This modification and permit is anticipated to occur in early February 2023 at the latest.

The list below summarizes the list of permits that FDOT has secured and the ones that are still being processed:

- SFWMD Right of Way Occupancy Permit Issued 9/30/22
- SFWMD Environmental Resource Permit Anticipated issue date of 11/29/22
- FDEP 404 Permit 30-45 days after SFWMD ERP is issued.

This section was intentionally left blank.

10. COST ESTIMATE

The cost estimate for the RFP and D/B alternatives are presented in **Table 29**. The cost estimates are inclusive of preliminary engineering (PE), construction engineering and inspection (CEI), and contingency.

Alternative	Cost (\$)
RFP Concept	114,258,982
D/B Concept	97,900,000

Table 29: Cost Estimate for RFP and D/B Alternatives

11. ALTERNATIVE COMPARISON

The comparison of the RFP and D/B Concepts is based on numerous factors including construction costs, safety and operational performance, environmental and socioeconomic impacts, among others. The comparative matrix in **Table 30** summarizes the various comparisons performed to determine that D/B Concept performs equal to or better than the original RFP Concept and satisfies the FHWA policy points. Based on this review, the D/B alternative was determined to result in construction cost savings and offers similar safety and operational performances when compared to the RFP alternative.

Re-evaluation Evaluation Criteria	Altern	ative	
Re-evaluation Evaluation Criteria	RFP	D/B	
2025 Traffic Operational Perf	formance		
AM Peak Hour EB/WB Average Density (pc/mi/ln)	9.90	9.75	
PM Peak Hour EB/WB Average Density (pc/mi/ln)	9.80	9.65	
2045 Traffic Operational Perf	formance		
AM Peak Hour EB/WB Average Density (pc/mi/ln)	19.00	18.70	
PM Peak Hour EB/WB Average Density (pc/mi/ln)	18.90	18.70	
Safety Performance			
Expected Crash Frequency (crashes/year)	18.9	19.6	
Environmental Impac	ts		
Environmental Impacts	Same	Same	
Right-of-Way (R/W) Imp	acts		
Right of Way to be Acquired (acres)	Same	Same	
Estimated Total Project	Costs		
Total Project Costs	\$114,258,982.00	\$97,900,000.00	

12. FUNDING PLAN AND SCHEDULE

Based on a review of the FDOT Five Year Work Program for 2017-2022 and 2023-2027, these interchange improvements are anticipated to be implemented within the on-going D/B project (FPID: 425843-2). Funding for the Highways/Design-Build project (\$20,715,957.00) has been secured for 2023.

A schedule of on-going efforts related to this project is displayed below.

- IMR Re-evaluation February 2023
- Design-Build Phase Kickoff September 2022
- Construction Anticipated Start: Spring 2023
- Permit: Per FDOT, to be received by Tuesday, November 29, 2022
- Estimated opening 2025

13. CONCEPTUAL SIGNING PLAN

A conceptual signing plan was developed for the recommended alternative and is provided in **Appendix K**.

This section was intentionally left blank.

Interchange Modification Report (IMR) Re-evaluation

I-75/SR 93 at SR 951/Collier Boulevard Interchange

14. QUALIFYING PROVISIONS

An assessment was performed of the Federal Highway Administration's (FHWA) two policy points that must be addressed for the justification and documentation necessary to substantiate any proposed change(s) in access to the Interstate System. Adequate access control to limited access facilities is essential to provide the highest LOS in terms of safety and mobility in these facilities. **Table 31** demonstrates compliance with the FHWA's requirements and justification for the D/B alternative.

Table 31: Review of Qualifying Provisions

FHWA Policy Points		IMR Re-evaluation Comment/Response	
Number 1	Description An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes; existing, new or modified ramps; and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, CFR, paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network to at least the first major intersection on either side of the proposed change in access should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).	Based on the results of the study, the D/B alternative is expected to have similar safety and operational performances when compared to the RFP alternative, will not have adverse effects to the interstate facility, and will meet the previously outlined requirements. It is noted that only a freeway safety and operational analysis was performed since no changes are expected to the local roadway network that would significantly impact safety or traffic operations.	Met?
2	The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2) and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.	The proposed interchange layout for the D/B Concept is expected to provide adequate access to the public roadway and will provide access for all traffic movements. Similarly, the proposed interchange modifications will be designed and constructed to meet current FDOT and AASHTO design standards.	Y

15. RECOMMENDATIONS AND CONCLUSIONS

Based on a comprehensive review documented in this IMR re-evaluation, it was determined that the D/B Concept performs equal to or better when compared to the RFP Concept. Design changes proposed by the D/B Concept are minor when compared to the RFP Concept. Based on the results of the analysis, the D/B alternative is expected to cost less, and it satisfies the purpose and need, SO&E requirements and FHWA's policy points, similar to the RFP Concept.

This section was intentionally left blank.

Appendices:

- Appendix A: Approved and Signed MLOU
- Appendix B: Transportation System Data
- Appendix C: FTO Traffic Data
- Appendix D: Crash Summary Worksheets and Detailed Fatal and Pedestrian Police Reports
- Appendix E: Land Use Map
- Appendix F: Conceptual RFP and D/B Figures
- Appendix G: Travel Demand Forecasting Information
- Appendix H: Historical Trendline Analysis
- Appendix I: Traffic Analysis Output Reports
- Appendix J: Safety Analysis Output Reports
- Appendix K: Conceptual Signing Plan

Appendix A: Approved and Signed MLOU

Florida Department of Transportation Interchange Access Request Methodology Letter of Understanding (MLOU)

Type of Request:	🗆 IJR	🛛 IMR (Re-evaluation)		
Type of Process:	🛛 Progr	ammatic	🗆 Non-Program	nmatic	\Box Other

I-75 (SR 93) at SR 951 (Collier Boulevard) Interchange Modification Report Re-evaluation

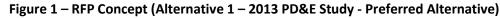
FPID: 425843-2

Coordination of assumptions, procedures, data, networks, and outputs for project traffic review during the access request process will be maintained throughout the evaluation process.

Full compliance with all MLOU requirements does not obligate the Acceptance Authorities to accept the IAR.

The Requestor shall inform the approval authorities of any changes to the approved methodology in the MLOU and an amendment shall be prepared if determined to be necessary.

Requestor	Kati C. Snerrard, PC, CPINI Corridors Program Engineer, District One	12/22/2022 7:56 AM EST Date
Interchange Review Coordinator	Joshua Jesten Joshua Jesten Josnua A. Jester E.I. District Interchange Review Coordinator, District One	12/22/2022 7:56 AM EST Date
Systems Management Administrator	Jerria Bownan Jerria Bownan Jerria Bownan Jerria Bownan, PE Systems Implementation Office-Central Office	12/22/2022 10:50 AM EST Date


1.0 Project Description

On June 15, 2022, the Contractor/Consultant team won the Design Build (D/B) project for I-75 (SR 93) at SR 951 (Collier Boulevard) and the contract's Notice to Proceed was officially received on September 9, 2022. The interchange design concept (D/B concept) presented by the D/B Team was slightly different than the one included in the original Request for Proposal Concept (RFP Concept) provided by the Florida Department of Transportation (FDOT), District One (D1) during advertisement.

The RFP concept corresponds to the Preferred Alternative (Alternative 1) selected under the Project Development and Environment (PD&E) Study signed in 2014 (FPID: 425843-1-22-01). The Preferred Alternative was evaluated from the traffic operations perspective in the Project Traffic Report (PTR) dated July 2013 and in the Interchange Modification Report (IMR) dated September 2013. Based on the analysis documented in these two reports, the diamond interchange at I-75 with Collier Boulevard and adjacent intersections along Collier Boulevard operated at acceptable levels of service (LOS) for existing conditions (2011). However, Alternative 1 was recommended to ensure acceptable LOS along Collier Boulevard since 2035 projected volumes operating under the existing diamond interchange would result in segments operating at unacceptable LOS. Alternative 1 proposes, modifying the existing diamond interchange to a partial clover leaf configuration (with loop ramps in the southwest and northeast quadrants of the interchange).


The main difference between the RFP Concept and the D/B Concept (presented as Alternative Technical Concept # 5 – ATC#5) is the number of merge points along eastbound I-75 at the interchange with Collier Boulevard. In the RFP concept, the loop ramp from southbound Collier Boulevard to eastbound I-75 and the ramp from northbound Collier Boulevard to eastbound I-75 merge on a ramp parallel to the mainline prior to merging with eastbound I-75 mainline traffic as a single point entrance ramp (See **Figure 1**). A new bridge parallel to the mainline carries the loop ramp traffic over Collier Boulevard.

In the D/B Concept, the existing mainline bridge is widened to accommodate the loop ramp traffic from southbound Collier Boulevard to eastbound I-75. This ramp merges with I-75 mainline onto a new auxiliary lane. The ramp for northbound Collier Boulevard to eastbound I-75 merges with the new auxiliary lane approximately 2,500 feet east of Collier Boulevard (See **Figure 2**)

The purpose of the Interchange Modification Report (IMR) re-evaluation is to analyze the D/B Concept and compare its performance with the RFP Concept. Since the IMR was approved in 2013, the project's design year will be updated to 2045. New design traffic volumes (for the I-75 facility only) will be developed using the District 1 Regional Planning Model (D1RPM) - travel demand model. Updated traffic data for the year 2045 will be used to analyze operations along the I-75 freeway facility.

This Methodology Letter of Understanding (MLOU) is being developed in accordance with the FDOT Policy No. 000-525-015, "Approval of New or Modified Access to Limited Access Highways on the State Highway System (SHS)"; FDOT Interchange Access Request User's Guide (IARUG), New or Modified Interchanges FDOT Procedure No. 525-030-160; and the Project Traffic Forecasting FDOT Procedure No. 525-030-120.

A. Purpose and Need Statement - No Change

The PD&E Study Purpose and Need is still applicable for this re-evaluation and summarized below for reference. I-75 is an integral part of the Strategic Intermodal System (SIS) providing for high-speed and high-volume traffic movements along the west coast of Florida and connecting the metropolitan areas of Naples and Miami. Collier Boulevard is the eastern most major north-south arterial of the Naples metropolitan region and connects densely developed areas such as Marco Island and Golden Gate to I-75. The Collier Boulevard interchange at I-75 is the last access prior to the Alligator Alley entry toll gate. Therefore, the interchange modification aimed to improve the safety, LOS, and traffic operations at the I-75/Collier Boulevard interchange and adjacent intersections.

From the analysis conducted during the preparation of the Project Development and Environment (PD&E) Study (dated July 2013) it was determined that the interchange of I-75 with Collier Boulevard operated at acceptable LOS in 2011. Although along Collier Boulevard moderate levels of congestion were observed south of I-75 through the Collier Boulevard/Davis Boulevard intersection (located approximately 1,300 feet south), overall acceptable LOS were also estimated. However, for the year 2035 the No-Build Scenario showed that several intersections along Collier Boulevard would operate below acceptable LOS.

B. Project Location - No Change

The project is located along I-75 (Roadway ID 03175000, Milepost 50.445) at the interchange with Collier Boulevard, located east of the City of Naples, in Collier County. Everglades Boulevard, located 8.9 miles away, is the next closest continuous north-south roadway east of Collier Boulevard. The closest I-75 interchanges, east and west of Collier Boulevard are SR 29 to the east (21.2 miles away) and Golden Gate Parkway to the west (3.3 miles away).

C. Area of Influence

The area of influence from the original IMR is described below:

- I-75 mainline from the overpass at Everglades Boulevard to the Golden Gate Parkway interchange
- Collier Boulevard: from Business Circle South to the south to Golden Gate Parkway to the north

The proposed area under analysis includes the original I-75 mainline segment and the related ramp junctions (merge/diverge points) within this segment, including the ramp junctions (merge/diverge points) that are affected by the proposed design changes. No design changes are proposed that would affect the operational analysis previously completed for the intersections along Collier Boulevard; hence, the ramp terminals will not be included within the influence area.

The ramp junctions within the area of influence include:

- EB I-75 to NB/SB Collier Boulevard Off-Ramp
- SB Collier Boulevard to EB I-75 Loop On-Ramp
- NB Collier Boulevard to EB I-75 On-Ramp
- WB I-75 to NB/SB Collier Boulevard Off-Ramp
- NB Collier Boulevard to WB I-75 Loop On-Ramp
- NB/SB Collier Boulevard to WB I-75 On-Ramp

Figure 3 shows the mainline I-75 area of influence to be used in the IMR Re-evaluation.

Note:

The closest I-75 interchanges, east and west of Collier Boulevard are SR 29 to the east (21.2 miles away) and Golden Gate Parkway to the west (3.3 miles away).

D. Project Schedule

The following is the anticipated schedule for this project:

- IMR Re-evaluation Underway
- Design-Build Phase Kickoff September 2022
- Construction Anticipated Start: Spring 2023
- Permit: Per FDOT, to be received by Tuesday, November 29, 2022
- Estimated opening 2025

2.0 Analysis Years

- A. Travel Demand Model District One Regional Planning Model, version 2 (D1RPM, v2)
 - Base Year 2015
 - Horizon Year 2045

B. Traffic Operational Analysis

- Existing Year No existing year will be evaluated given that the re-evaluation will be performed by comparing the results of the design year (2045) for the RFP Concept with the D/B Concept presented as part of the ATC developed by the D/B Team
- Opening Year 2025
- Design Year 2045

A year of failure analysis shall be performed for the Preferred Alternative, in case a failing LOS is obtained in the Design Year.

3.0 Alternatives

For the purposes of this re-evaluation, the Preferred Alternative (RFP Concept) will represent the No Build Alternative, and the proposed modified design concept (D/B Concept) will represent the Build Alternative. Comparison between the two alternatives will be conducted to ensure that the D/B Concept provides comparable LOS results (equal or better) than the RFP Concept.

Figure 3 - Area of Influence

4.0 Data Collection

The type of data that may be used is identified below:

A. Transportation System Data

FDOT Straight-Line Diagrams (SLDs), Roadway Characteristic Inventory (RCI), and field observations will be used along with the historical crash data, prior reports, and prior studies. Data will be collected from various sources including FDOT D1, Collier County, and other agencies if necessary. Field visits will be conducted to collect information on existing geometry, as needed.

B. Existing and Historical Traffic Data

The latest available and historical traffic data will be obtained from FDOT's Florida Traffic Online (FTO) database and will be reviewed to identify any significant variations in volumes or patterns in recent years. It is noted that within the study area the latest available FTO traffic data includes data from 2006 up to 2021. Additionally, traffic data from the 2019 data collection effort associated with the District 1's Southwest Connect project, which included the I-75/SR 951 interchange, will be used to supplement, compare and confirm data from the FDOT's FTO, depending on the location and type of count performed (if applicable).

C. Land Use Data

The D1RPM, v2 was released on January 29, 2021, and will be used in this re-evaluation. The future land use was updated to 2045 as part of the model development efforts and the D1RPM, v2 reflects the most up-to-date land use assumptions along the I-75 corridor.

D. Environmental Data - No Change

E. Planned and Programmed Projects

This study will consider programmed and planned roadway improvements in the area and will be consistent with regional transportation plans including the following:

- FDOT Five Year Work Program
- FDOT Strategic Intermodal System (SIS) plans
- Committed improvements from local and private sources
- Adopted Long Range Transportation Plans (LRTPs) and Comprehensive Plans

5.0 Travel Demand Forecasting

A. Selected Travel Demand Model(s)

The D1RPM V2.0, updated on January 29, 2021, will be used to develop the travel demand forecasting for this study. The D1RPM model is a Florida Standard Urban Transportation Structure (FSUTMS), four-step, tripbased model. Developed with CUBE/Voyager v6.4.2 transportation planning software. The model, with 5,280 traffic analysis zones (TAZ) covers 12,400 square miles in 12 counties: Charlotte, Collier, Desoto, Glades, Hardee, Hendry, Highlands, Lee, Manatee, Okeechobee, Polk, and Sarasota. A portion of Osceola County adjacent to NE Polk County is also included. The D1RPM consists of a base year of 2015 and a forecast year of 2045. The model was used and comprehensively tested in the MPO LRTPs and is the adopted official model in the region to be used in the planning/PD&E and traffic forecasting studies.

The model has 4 time-period assignments:

- AM-Peak Period (6:00 AM 9 AM)
- Midday Period (9:00 AM 4 PM)
- PM-Peak Period (4:00 PM 7 PM)
- Overnight Period (7:00 PM 6 AM)

The model's highway traffic assignment is performed at individual peak period-level and the assigned volumes from all four periods are then combined to report the average annual daily traffic (AADT) volumes. Therefore, no adjustment factors are necessary to forecast the AADT volumes. However, adjustments may be needed to ensure subarea model volumes match the AADT counts closely.

B. Project Traffic Forecast Development Methodology

Base (2015), opening (2025) and future year (2045) traffic volumes will be developed considering various methods (outlined below) to ensure that the developed traffic volumes are accurate and reasonable. The project traffic forecast development will be performed in accordance with FDOT's Project Traffic Forecasting Handbook and will be further detailed in the report documentation.

The travel demand forecasting will begin by utilizing the FDOT D1RPM (travel demand model) to obtain base, opening, and future year preliminary AADTs with accompanying growth rates. The travel demand output will be reviewed for reasonableness by:

- Comparing preliminary D1RPM outputs and growth rates to historical AADTs, growth rates, population and economic data, and existing and future land uses (obtained from FTO, BEBR, past FDOT studies, etc).
- Comparing preliminary D1RPM output AADTs to the latest historical AADTs that will be projected to the future year (2045) using the growth rates obtained from this analysis.

Based on these reviews, the FDOT D1RPM travel demand model may be adjusted to account for any errors in the base year model validation to obtain the finalized AADTs to be used in the analysis.

C. Validation Methodology

A subarea of the D1RPM, v2 will be validated to acceptable Florida Standard Urban Transportation Model Structure (FSUTMS) standards per section 3.8 of the Project Traffic Forecasting Handbook (2019). The D1RPM, v2 2015 and 2045 inputs, including the networks, zonal structure, and socioeconomic (SE) data, will be reviewed within the subarea. A detailed description of the validation checks is provided below:

- Review of subarea network, attributes, counts review and coding. A model's base year network review will be performed. The model's 2015 network will be reviewed against the historic aerial images available from Google and other free sources. This is a standard practice to perform detailed review of the model network links and their characteristics within a designated subarea while performing the design traffic forecasts. The model's network geometry, and key network attributes such as the number of lanes, posted speeds, facility types will be reviewed and updated as part of this effort. Any changes to the model network will be documented for a) model validation check documentation purpose, and b) propagating the changes to the future conditions' networks. In addition, the 2015 traffic counts coded in the model networks will be reviewed and updated as needed.
- **Review of subarea TAZ data review and adjustments.** The TAZ data within the subarea will be reviewed. Primarily, the review will focus on the population and employment growth between the base year (2015) and the future year (2045) TAZs. The TAZ growth rates will be documented within the model subarea. Any growth rate issues within the subarea boundary will be documented. These will be used to evaluate the corresponding model forecasts.
- Subarea model validation checks. The model validations checks and adjustments will be performed within the subarea boundary. Primarily, the 2015 model outputs will be evaluated against the 2015 AADT traffic counts and the model validation summaries within the subarea will be checked. Subarea-level, facility type level and link-level model validation statistics will be evaluated. The RMSE and Volume to Count Ratio measures will be used for this evaluation. Necessary adjustments will be made to the model parameters, such as centroid connectors, facility type, capacity, and speeds to improve the model validation.

D. Adjustment Procedures

As described in Section 5.B of this MLOU, the traffic forecasting methodology includes utilizing the FDOT D1RPM model to obtain projected volumes and performing various checks to adequately adjust the AADTs to be utilized in this study. A summary of the reviews and adjustment procedures is described below and will be further detailed in the report documentation.

- Compare base (2015), opening (2025) and future year (2045) preliminary D1RPM traffic volume outputs and growth rates to historical AADTs, growth rates, population and economic data, and existing and future land uses.
- Compare preliminary D1RPM output AADTs to the latest historical AADTs (2019) that will be projected to the future year (2045) using the growth rates obtained from this analysis.
- Based on these reviews, perform adjustments, if any, to the FDOT D1RPM travel demand model to account for any errors in the base year model validation to obtain the finalized AADTs to be used in the analysis.

E. Traffic Factors

- The corridor design traffic will be based on the K and D factors. Selection of the K and D factors will follow the criteria outlined in the 2019 FDOT Project Traffic Forecasting Handbook and Procedure (525-030-120).
- Tables 2-1 and 2-2 (of the 2019 FDOT Project Traffic Forecasting Handbook) provide a summary of Kstd and acceptable ranges for D factors. The Kstd factor is the proportion of AADT volumes occurring during the peak-hour of the design year, depending upon the area type and facility type. The D factor is the proportion of traffic traveling in the peak period direction.
- **Table 1** and **2** summarize the FDOT Kstd and D target thresholds, respectively, that are applicable to this project, as presented in the 2019 Project Traffic Forecasting Handbook.

Area Type Facility Type		Kstd
Other Urbanized Areas	Freeways	9.0
	Arterials	9.0

Table 1 – FDOT Recommended St	tandard K (K _{std}) Factor
-------------------------------	--------------------------------------

			,	0
Road Type	Low D	Medium D	High D	Standard Deviation
Urban Freeways	50.4	55.8	61.2	4.11
Urban Arterials	50.8	57.9	67.1	4.60

Table 2 – FDOT Recommended D-Factors for Project Traffic Forecasting

To determine which will be the most appropriate Kstd and D factors to be used in this re-evaluation, data from the FDOT traffic monitoring station No. 032000 (located west of CR 951) was reviewed. From the review, a Kstd equal to 0.9 and a D equal 56% were preliminarily selected for the I-75 mainline. These factors were estimated by calculating the average of the D factor for the last five years (as reported on the Historical AADT Report). The daily truck factor T24 was selected to be 12%. Similar to the calculation for the Dfactor, the T24 was estimated as the average of the last five years for the I-75 mainline. The previously identified factors are summarized in **Table 3**.

Table 3 - Traffic Factors*

Roadway	К	D	Т	T _f	PHF	MOCF**
I-75	9.00%	56%	12%	6%	0.95	N/A

Note(s):

(*) This data was obtained from FDOT FTO PTMS Site No. 032000. If any of the above traffic factors are modified during the IAR due to additional information becoming available, then CO will be informed and supporting information will be provided in the IAR. (**) It is noted that a Model Output Conversion Factor (MOCF) is not applicable for the current version of the D1RPM model.

6.0 Traffic Operational Analysis

The traffic operational analysis will focus on the freeway segments (basic and merge/diverge) in the vicinity of the interchange of I-75 at Collier Boulevard. The segments of I-75 to the east and west of the I-75 interchange at Collier Boulevard will be analyzed using the Highway Capacity Software (HCS). Based on results summarized in the PTR and IMR completed in 2013, I-75 mainline operated at acceptable LOS up to design year 2035. No operational analysis of the intersections along Collier Boulevard will be developed. **Table 4** and **Table 5** summarize the area type/traffic conditions and Traffic Analysis Software.

A. Existing Area Type/Traffic Conditions

Table 4 – Existing Area Type/Traffic Conditions

	Conditions				
Area Type	Under Saturated	Saturated			
Rural					
Urban Area/Transitioning Area	\boxtimes				

B. Traffic Analysis Software Used

Software		System Component						
		Freeway				Crossroad		
Name	Version	Basic Segment	Weaving	Ramp Merge	Ramp Diverge	Arterials	Intersections	
HCS/HCM	8.2	\square		\boxtimes	\boxtimes			
Synchro	N/A							
Corsim	N/A							
Vissim	N/A							
Other	N/A							

C. Calibration Methodology

Since Microsimulation will not be conducted for the re-evaluation, then Calibration will not be necessary for this project. Therefore, Measures of Effectiveness (MOEs) and calibration targets were not established.

D. Selection of Measures of Effectiveness (MOE)

The Level of Service criteria for freeway is based on Density (pc/mi/ln). Therefore, Density will be the primary Measure of Effectiveness (MOE) to develop the analysis. Similar to the tables included in the Project Traffic Report (PTR) completed in July 2013, for the PD&E Study, speed will also be used to summarize and compare the results of the analysis. These two MOEs will be used for the basic freeway mainline segments and the merge/diverge areas.

LOS Targets per the State Highway System, Policy No. 000-525-006c, effective April 19, 2017 will be utilized and are summarized below:

• I-75 Mainline and Ramps: LOS D

7.0 Safety Analysis

A. Detailed crash data within the study area will be analyzed and documented. The latest five years of crash data shall be used.

Years: 2017-2021 (or latest available fully certified data) as well as the latest available uncertified data for comparison purposes.

Source: FDOT's CARS and SSOGIS database, and Signal Four Data Analytics.

B. Identify the level of safety analysis to be performed, along with any software and tools to be used.

The safety analysis will be consistent with the 2022 IARUG and the IARUG Safety Analysis Guidance. The safety analysis will be performed for the most recently FDOT-approved five years of crash data. The safety analysis will document crash rate, crash patterns, crash types, and their contributing causes for existing conditions and will provide safety impact (positive or negative) of the proposed improvements for the design year. Where applicable, Highway Safety Manual (HSM) methodologies will be utilized to quantitatively assess the geometric and traffic control options for the roadway intersection/segments in the study area. Since the analysis will focus on the I-75 freeway mainline, the ISATE Spreadsheet tool will be used.

8.0 Consistency with Other Plans/Projects

A. The request will be reviewed for consistency with facility Master Plans, Actions Plans, SIS Plan, MPO Long Range Transportation Plans, Local Government Comprehensive Plans or development applications, etc.

The following plans will be evaluated with this request for consistency:

- The Collier MPO 2045 LRTP
- I-75 Southwest Connect South Corridor Master Plan (FPID No. 442519-1-12-01)

B. Where the request is inconsistent with any plan, steps to bring the plan into consistency will be developed.

This request will be evaluated and compared to the applicable plans and projects listed above for consistency. If inconsistency is determined, a plan for consistency will be developed.

C. The operational relationship of this request to the other interchanges will be reviewed and documented. The following other IARs are located within the area of influence.

There are no other active IARs currently within the area of influence.

9.0 Environmental Considerations

A. Status of Environmental Approval and permitting process.

FDOT is in the process of securing the following permits:

- SFWMD Right of Way Occupancy Permit Issued 9/30/22
- SFWMD Environmental Resource Permit Anticipated issue date of 11/29/22
- FDEP 404 Permit 30-45 days after SFWMD ERP is issued

B. Identify the environmental considerations that could influence the outcome of the alternative development and selection process.

The proposed design change is not anticipated to result in any environmental impacts or considerations that were not already evaluated during the development of the originally approved design concept. The permitted design concept accounts for 7.28 acres of wetland and surface water direct impacts, which includes 100% of the wetland area within the interchange infields. Further, the FDOT has purchased 2.51 UMAM forested freshwater mitigation credits at Panther Island Mitigation Bank to offset wetland impacts of this project.

10.0 Coordination

Yes	No	N/A	
\square			An appropriate effort of coordination will be made with appropriate proposed developments in the area.
			Request will identify and include (if applicable) a commitment to complete the other non-interchange/non-intersection improvements that are necessary for the interchange/intersection to function as proposed.
			Request will document whether the project requires financial or infrastructure commitments from other agencies, organizations, or private entities.
			Request will document any pre-condition contingencies required in regards to the timing of other improvements and their inclusion in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document).
\square			Request will document the funding and phasing.

The main purpose of this re-evaluation is to assess the impacts that the changes proposed by the D/B Project will have on the traffic operations along I-75 mainline (in the vicinity of the interchange with Collier Boulevard).

Significant coordination efforts took place during the PD&E Phase. All of the improvements proposed in the RFP concept will be considered in the D/B project, except for elimination of the parallel bridge ramp on the south side of I-75. Therefore, coordination as part of this re-evaluation will include FDOT D1 and Central Office. No coordination with other local agencies is foreseen for this re-evaluation.

In addition, the project is already in the D/B phase which signifies that it has previously been included in the TIP/STIP/LRTP and funding has been secured. Therefore, the funding and phasing plan have already been established.

11.0 Anticipated Design Exceptions and Variations

The following are exceptions/variations to FDOT, AASHTO or FHWA rules, policies, standards, criteria or procedures which are listed in the IAR document. It is noted that the design exceptions and variations will be further detailed in the report documentation.

- Two Design Variations related to the Horizontal Curve Radius for ramps A-3 and C-2.
- Three Design Variations for Shoulder Widths along Ramp C2.
- Various Design Variations related to the Shared Use Path Horizontal Clearance which does not impact the development of the IMR Re-evaluation.

12.0 Conceptual Signing Plan

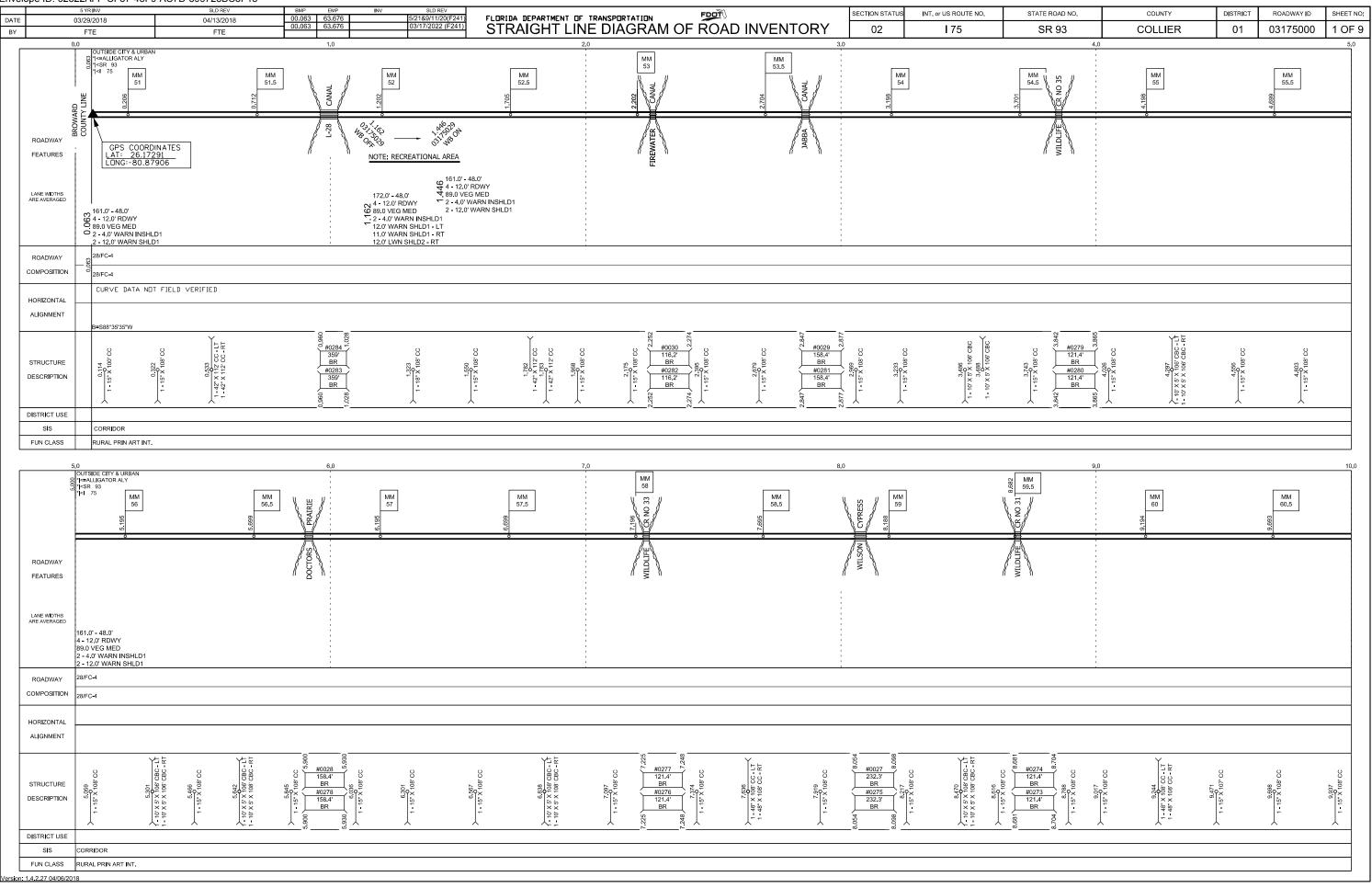
A conceptual preliminary signing and marking plan shall be prepared in accordance with MUTCD criteria and included in the access request.

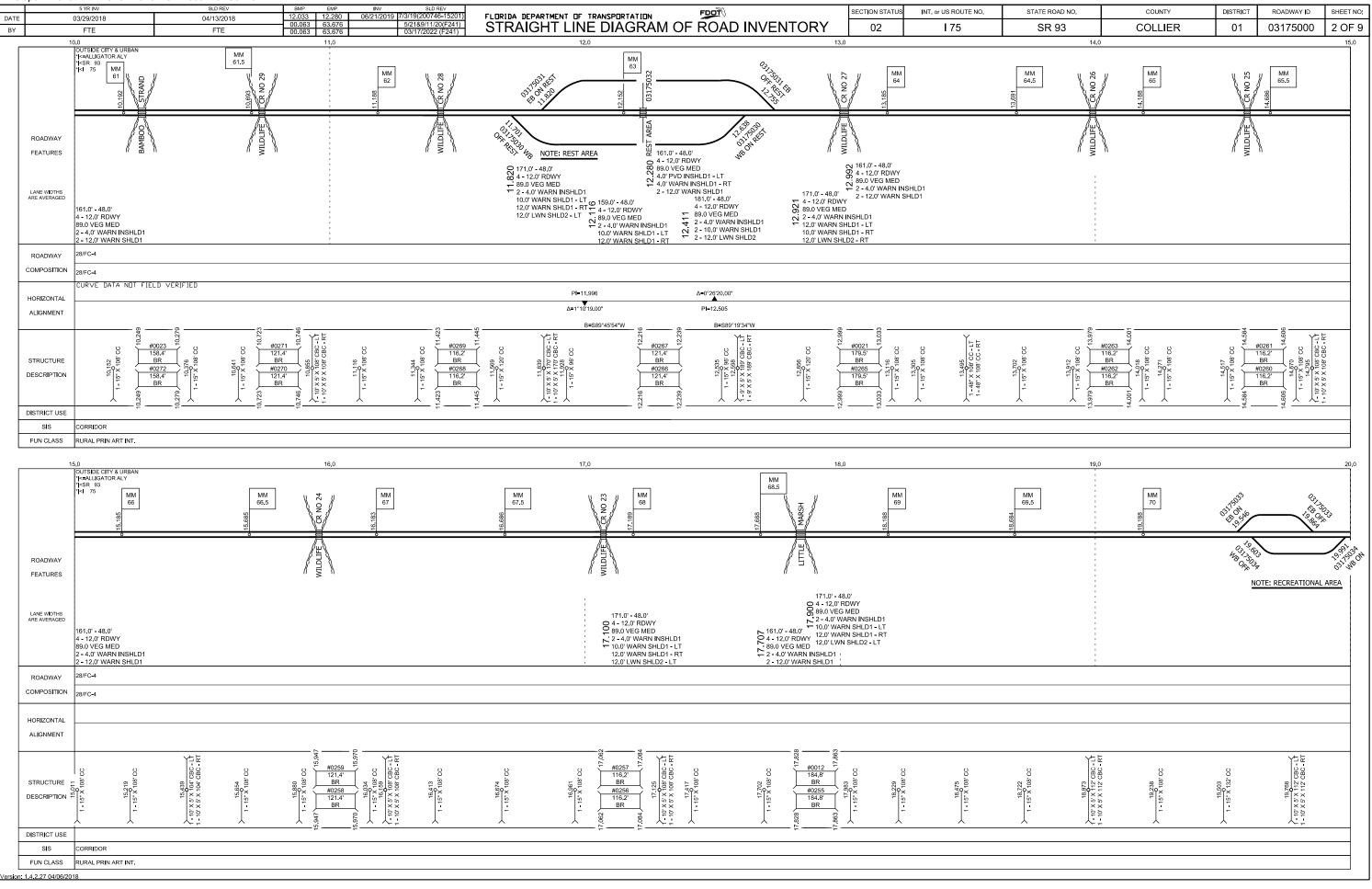
13.0 Access Management Plan

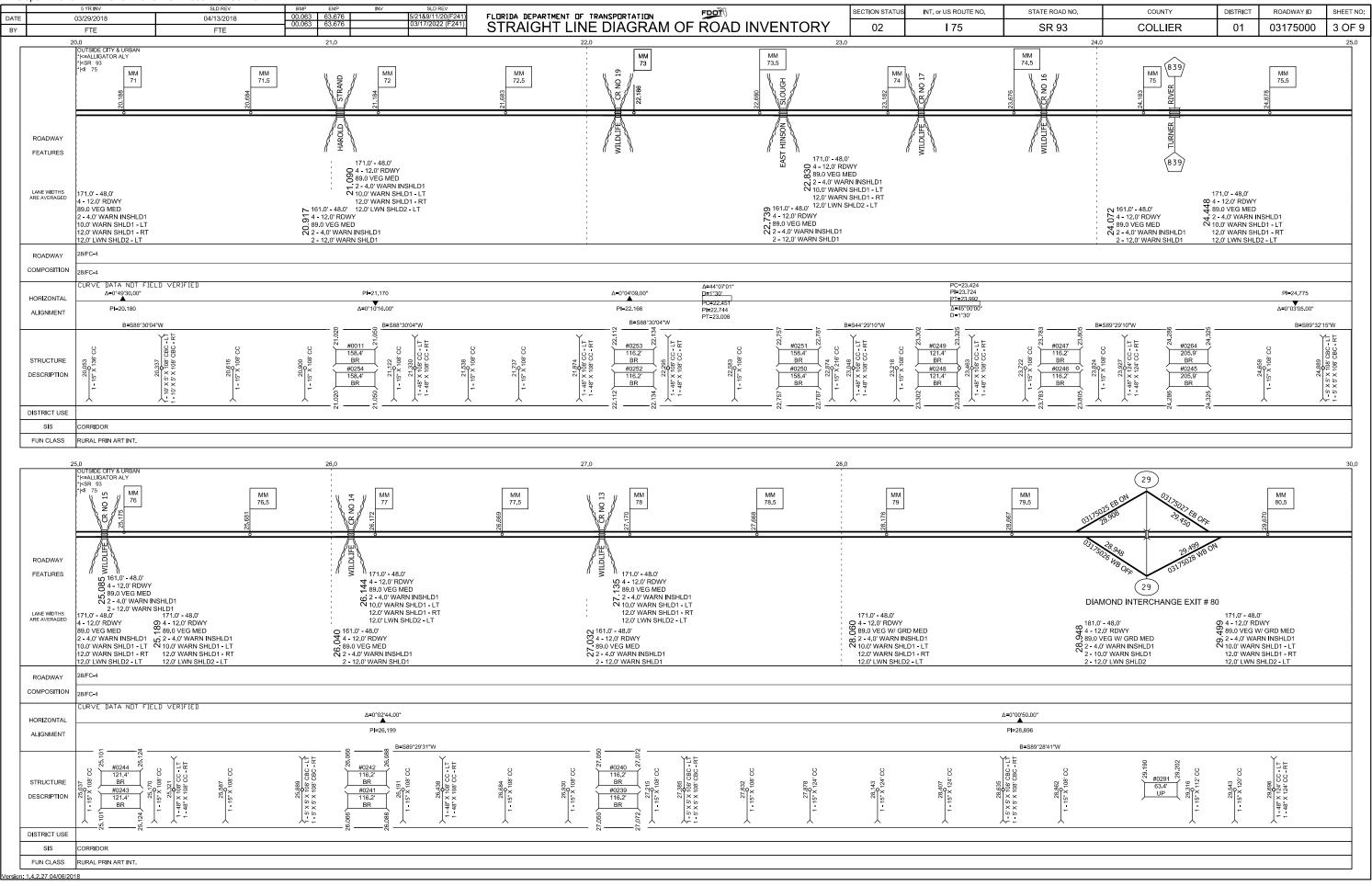
- Access management plan within the area of influence will not be changed by the proposed improvements to the interchange.
- The improvement will affect the access management within the area of influence that will require a change to the access management plan. An access management plan will be developed within the area of influence to complement the improvements to the interchange.

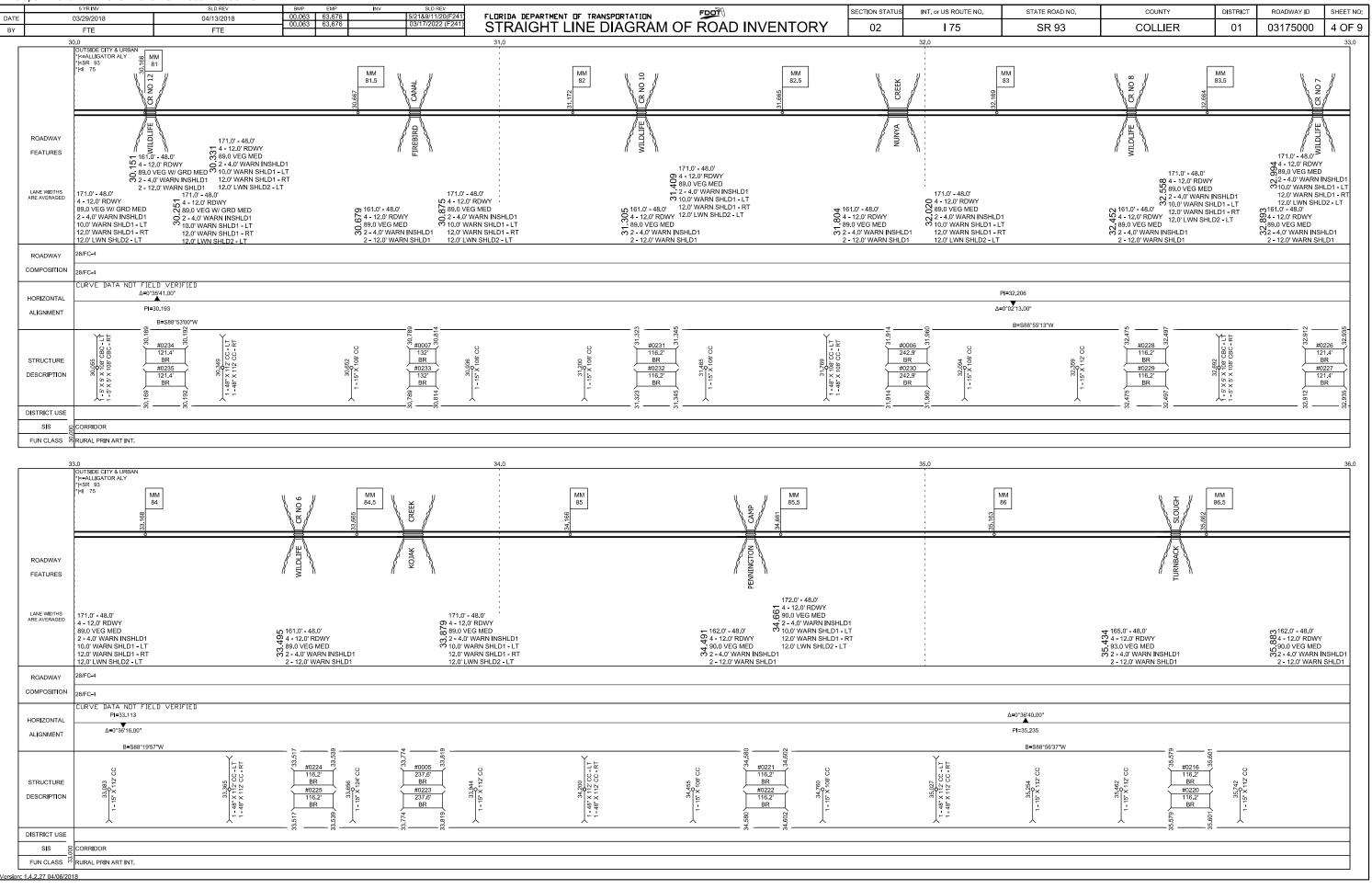
14.0 FHWA Policy Points

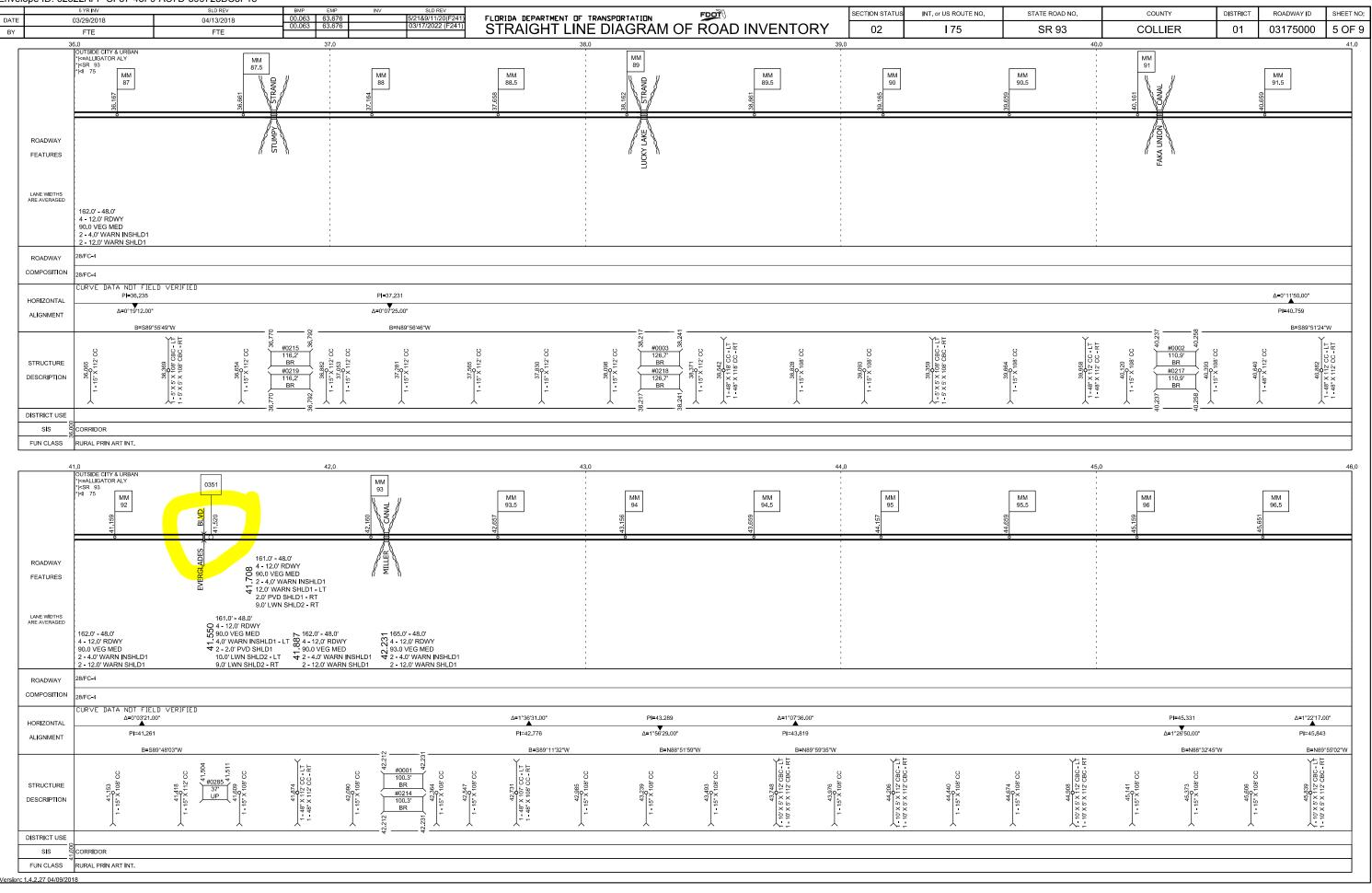
The two FHWA policy points will be addressed as part of the IMR Re-evaluation. LOS and Safety analyses will be prepared to ensure that the proposed improvements do not detrimentally impact traffic operations within the area of influence. The proposed interchange configuration proposes modifications to a full existing interchange with a local road.

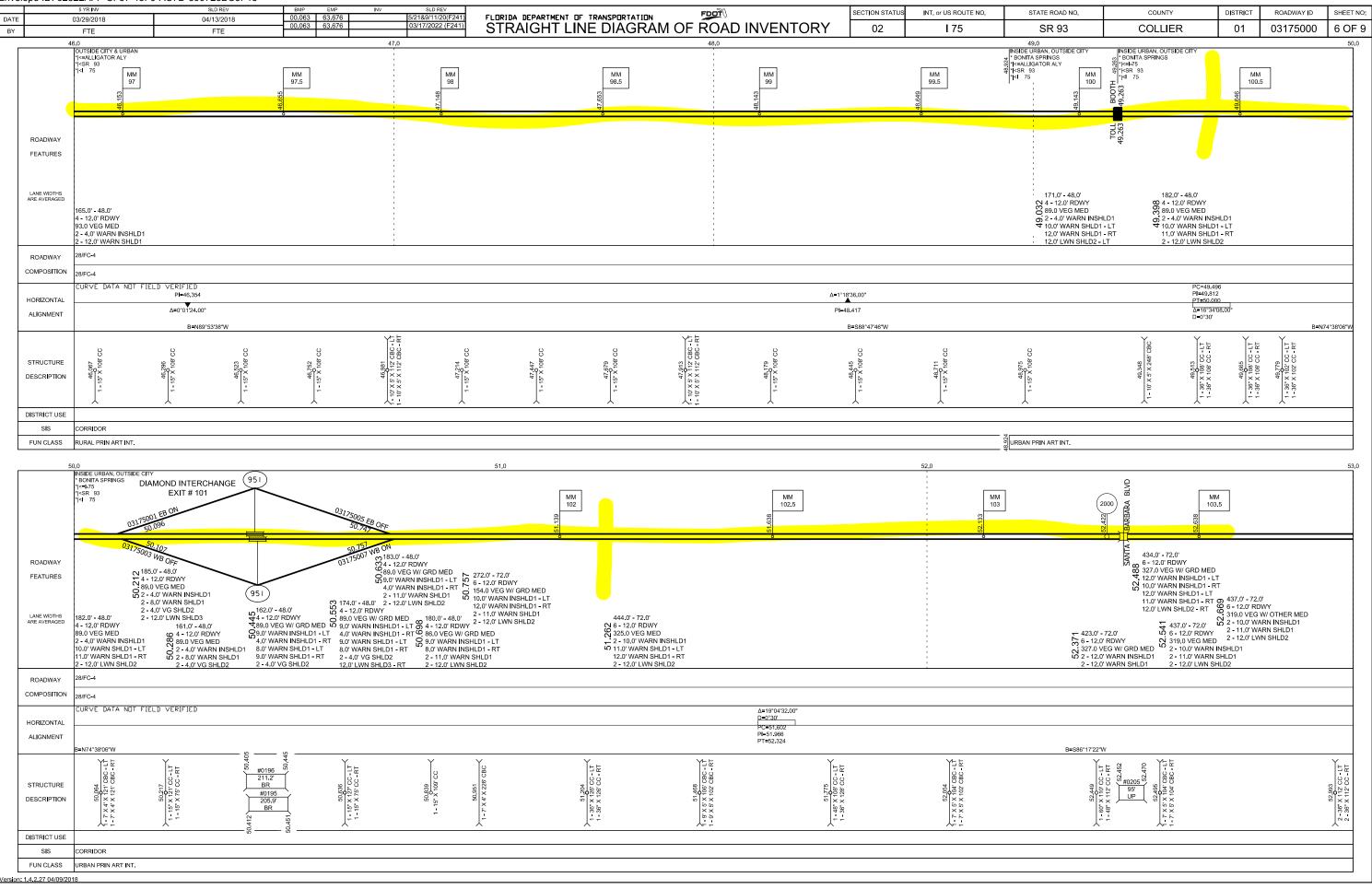


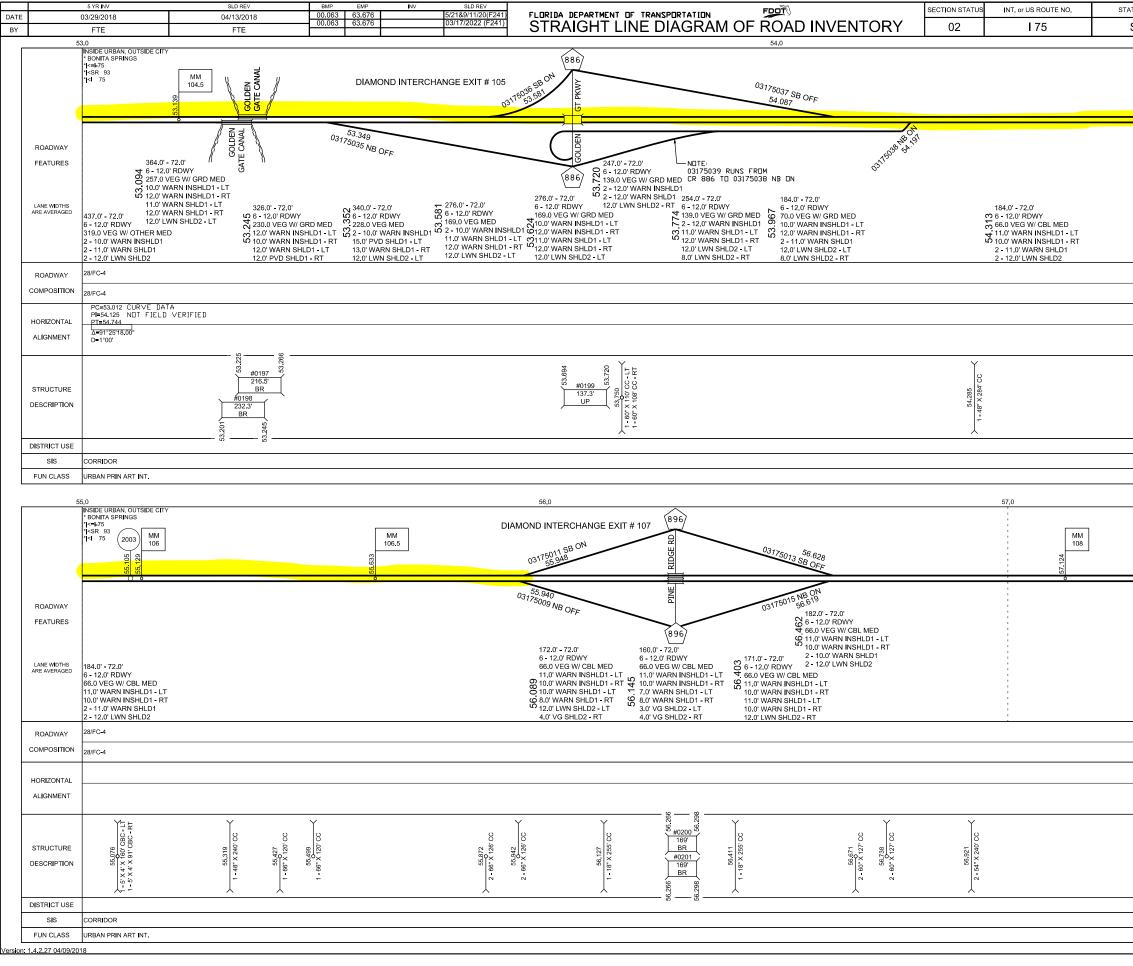

I-75/SR 93 at SR 951/Collier Boulevard Interchange

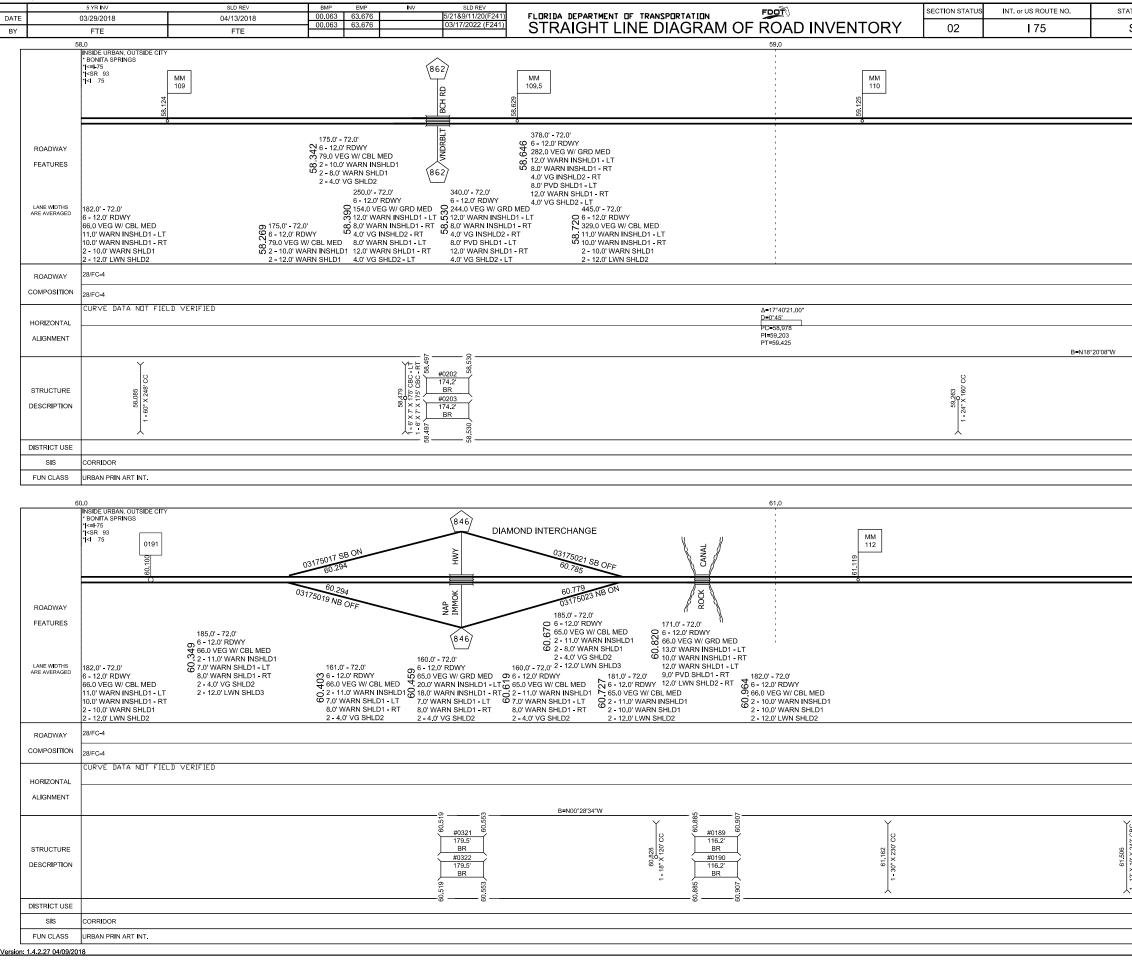

Appendix B: Transportation System Data

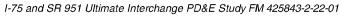

NIL NIL <th>- I</th> <th>5 YR INV</th> <th>SLD REV</th> <th>BMP</th> <th>EMP</th> <th>INV</th> <th>SLD REV</th> <th></th> <th></th> <th>FDOT</th> <th></th> <th>SECTION STATUS</th> <th>INT. or US ROUTE NO.</th> <th>ST</th>	- I	5 YR INV	SLD REV	BMP	EMP	INV	SLD REV			FDOT		SECTION STATUS	INT. or US ROUTE NO.	ST
Image: Second the time of the second the time of the second	ATE	08/20/2020	09/03/2020	16.205	16.396		6/3/22(QAR22-F212						INT. OF US NOUTE NO.	
Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception Image: Second to Static Exception <td< th=""><th>BY</th><th>FTE</th><th>FTE</th><th></th><th></th><th></th><th></th><th></th><th>E DIAGRAM O</th><th>F ROAD INVEN</th><th>IORY</th><th>02</th><th></th><th></th></td<>	BY	FTE	FTE						E DIAGRAM O	F ROAD INVEN	IORY	02		
MERCENSE S.OP PVD SHLD1 - RT S.OP PVD SHLD1 - RT <th< th=""><th>CO2 202 202 202 202 202 202 202 202 202 2</th><th></th><th>155.0' - 44.0'L+48.0'R 4 - 11.0'L + 4 - 12.0'R RDWY 39.0 C88VEG MED 2 - 2.0' C8G INSHLD1 0' PVD SHLD1 - LT 5.0' PVD SHLD1 - LT 12.0' LWN SHLD2 - RT 172.0' - 96.0' Y 7 8 - 12.0' RDWY X 1.0 C88VEG MED G 2 - 2.0' C8G INSHLI G 2 - 2.0' C8G INSHLI</th><th>5 </th><th>EE ROADW MP 9.436</th><th>/AY ID: 035 TO MP 10</th><th>530000 0.074</th><th>16.470 TURNOUT 10.704 1</th><th>INTERCHANGE</th><th>1</th><th>16.843 ENDS @ RIGHT OF 16.843</th><th></th><th></th><th></th></th<>	CO2 202 202 202 202 202 202 202 202 202 2		155.0' - 44.0'L+48.0'R 4 - 11.0'L + 4 - 12.0'R RDWY 39.0 C88VEG MED 2 - 2.0' C8G INSHLD1 0' PVD SHLD1 - LT 5.0' PVD SHLD1 - LT 12.0' LWN SHLD2 - RT 172.0' - 96.0' Y 7 8 - 12.0' RDWY X 1.0 C88VEG MED G 2 - 2.0' C8G INSHLI G 2 - 2.0' C8G INSHLI	5 	EE ROADW MP 9.436	/AY ID: 035 TO MP 10	530000 0.074	16.470 TURNOUT 10.704 1	INTERCHANGE	1	16.843 ENDS @ RIGHT OF 16.843			
Indextant Indextant <thindextant< th=""> <thindextant< th=""> <thindextant< th=""></thindextant<></thindextant<></thindextant<>		5.0' PVD SHLD1 - RT 2 - 12.0' LWN SHLD2	5.0' PVD SHLD1 - R	er 🗋	2 - 6.0' PVD	SHLD1		2 - 4.0' PVD SHLD1	2 - 6.0' PVD SHLD1 ص				GTH: 0.638	
Land Carte HORIZONTAL COVE DATA NDT FIELD VERIFIED ALIGNMENT BENOUTIOUE BENOUTIOUE COVE STRUCTURE COVE DESCRIPTION COVE DISTRICTUSE COVE SIS COVE		20/FC-2												
HORZONTAL ALGOMENT ALGOMENT B=N00'0100'E STRUCTURE Image: Structure description DESCRIPTON Image: Structure description DISTRCT USE Image: Structure description STRUCTURE Image: Structure description DISTRCT USE Image: Structure description STRUCTURE Image: Structure description	COMPOSITION													
BENDO'0100'E STRUCTURE DESCRIPTION DISTRICT USE DISTRICT USE SIS		CURVE DATA NOT	FIELD VERIFIED											
STRUCTURE DESCRIPTION DISTRICT USE SIS	ALIGNMENT													
STRUCTURE DESCRIPTION DISTRICT USE SIS		B=N00°01'00"E												
SIS .								47.5' 47.5'						
SIS .														
	DISTRICT USE													
FUN CLASS URBAN PRIN ART OTHER	SIS													
	FUN CLASS	URBAN PRIN ART OTHER												

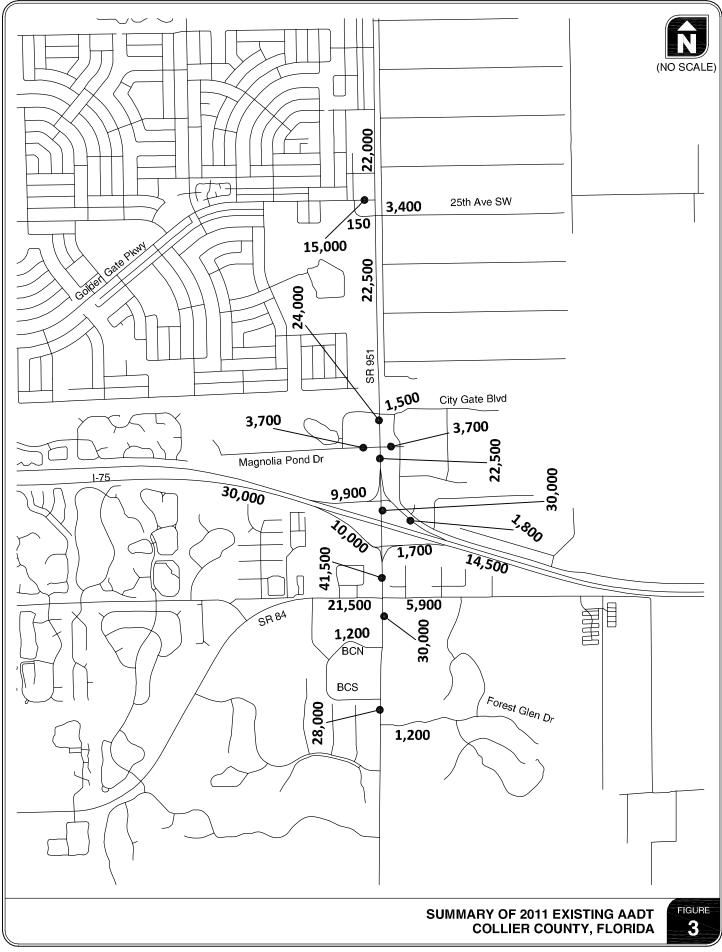

TATE ROAD NO.	COUNTY	DISTRICT	ROADWAY ID	SHEET NO:
SR 951	COLLIER	01	03030001	1 OF 1
				·



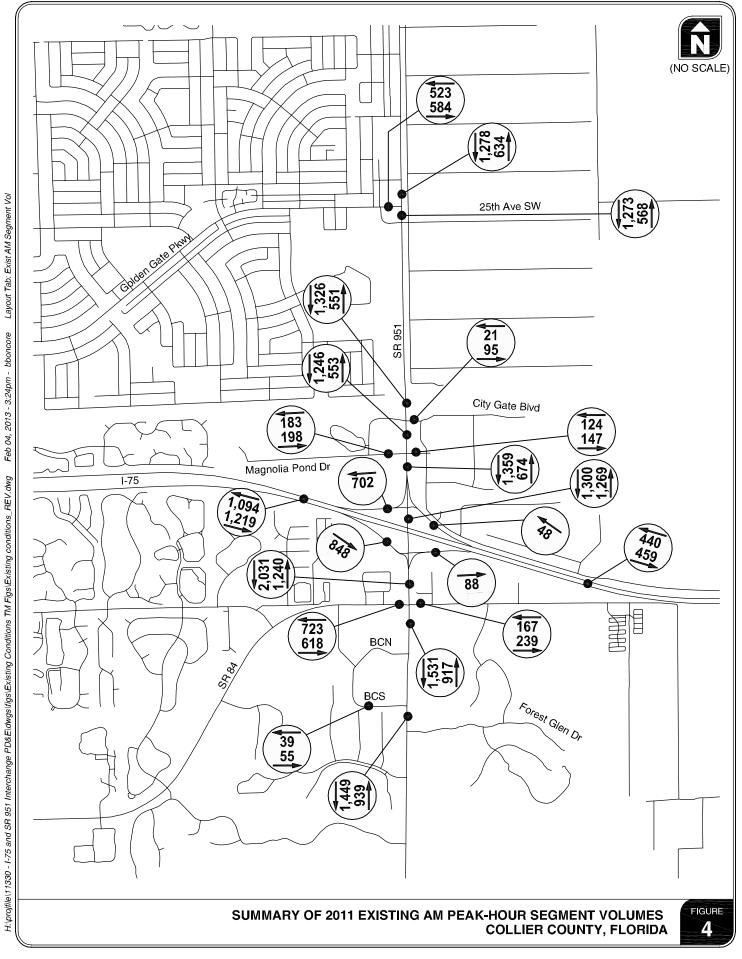


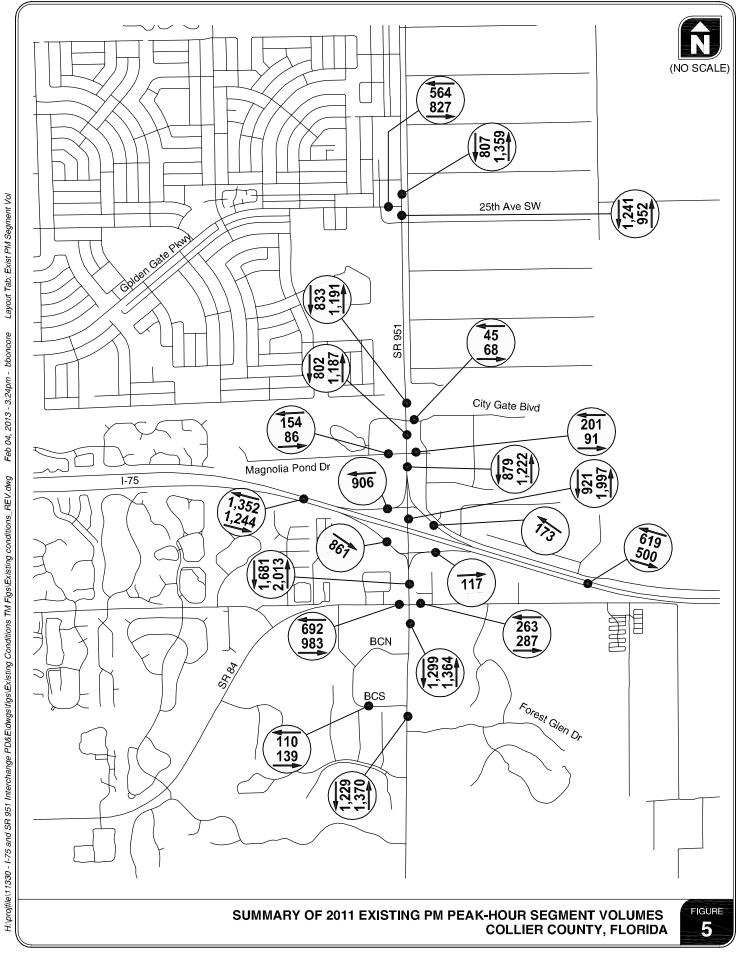


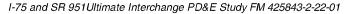

ATE ROAD NO.	COUNTY	DISTRICT	ROADWAY ID	SHEET NO:
SR 93	COLLIER	01	03175000	7 OF 9
				55.0
	MM 105.5			
	<mark>54.</mark> 631			
	0			=
	B=N00°	'39'47"W		
CBC				
54.592 1-10' X 5' X 290' CBC				
1-10				
				58.0
		M 8.5		
	s <u>57.627</u>			
				—
Ý		Ý		Y
57.324 1 - 66" X 224' CC		57.709 1 - 60" X 112' CC 57.776	2	57.995 1 - 72" X 224' CC
57.5 1-66" X		1 - 60" X	× _09 - L	57 <u>5</u> 1 72" X
Υ		Ϋ́,		

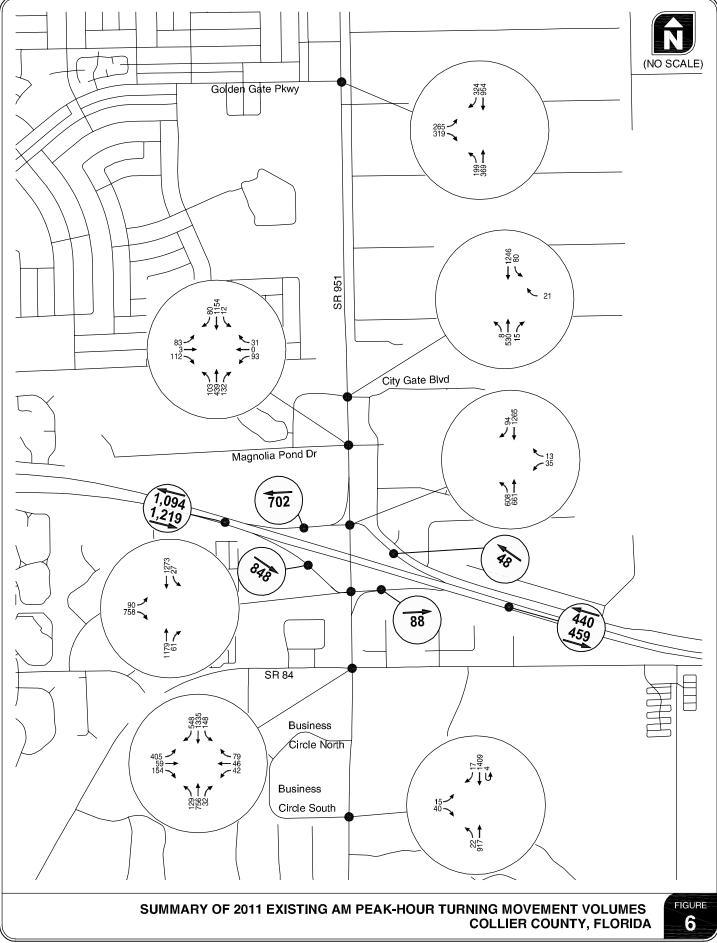

ATE ROAD NO.	COUNTY	DISTRICT	ROADWAY ID	SHEET NO:
SR 93	COLLIER	01	03175000	8 OF 9
				60.0
	MM 110.5			
	59.620			
	0			
		1	82.0' - 72.0'	
			6 - 12.0' RDWY 6 - 0 VEG W/ CBL MED	
		- 65 1 2	1.0' WARN INSHLD1 10.0' WARN INSHLD1 2 - 10.0' WARN SHLD1	RT
		2	2 - 12.0' LWN SHLD2	
			PC=5	9.993
			P I= 60 PT=6	0.686
			Δ=18 D=0°3	" 17'38. 00" 30'
				62.0
9950				
	MM 112.5			
61.558	61.624			
0	<u>دا</u>			
Yu	Y			
242' CE	61.728 1 - 42" X 290' CC			
10' X 2	61.728 2" X 290			
1-12 X 10' X 242' CBC	1-42			
<u>۸</u> -	λ			

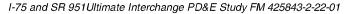
		5 YR INV	SLD REV	BMP EMP	NV	SLD REV		l' Toc	SECTION STATUS	INT. or US ROUTE NO.	STA
DATE		03/29/2018	04/13/2018	00.063 63.676		5/21&9/11/20(F241) 03/17/2022 (F241)	FLORIDA DEPARTMENT OF TRANSPORTATION		02		
BY		FTE	FTE			<u>```</u>	STRAIGHT LINE DIAGRAM OF R		02	I 75	
		2.0 INSIDE URBAN, OUTSIDE CITY BONITA SPRINGS 1<=-175 1<=75 1<=75 1<=75	MM 113			0 0 0 2 0 16	MM 113.5	63.0 MM 114 E			
	ROADWAY FEATURES										
		182.0' - 72.0' 6 - 12.0' RDWY 66.0 VEG W/ CBL MED 2 - 10.0' WARN INSHLD1 2 - 10.0' WARN SHLD1 2 - 12.0' LWN SHLD2									
	ROADWAY	28/FC-4									
	COMPOSITION	28/FC-4									
	HORIZONTAL	CUR∨E DATA NDT FIEL	_D VERIFIED				Δ=19°28'46.00" P=1°00'				
	ALIGNMENT						P⊂62.889 P⊫62.714 PT=63.259				
	STRUCTURE	62.049 1 - 30" X 240" CC		22.349 1 - 18" X 120' CC			22.645 1 - 30° X 240' CC		63.268 63.268 2-10' × 8' × 220' CBC 2-10' × 8' × 220' CBC	20 W	
	DISTRICT USE										
	SIS	CORRIDOR									
	FUN CLASS	URBAN PRIN ART INT.									
		•									


TATE ROAD NO.		COUNTY	DISTRICT	ROADWAY ID	SHEET NO:
SR 93	С	OLLIER	01	03175000	9 OF 9
		CPS COORDINA LAT: 26.31689 LDNG:-81.74619	63.676		
	CORRIDOR	63.676			
		۵ ۵			

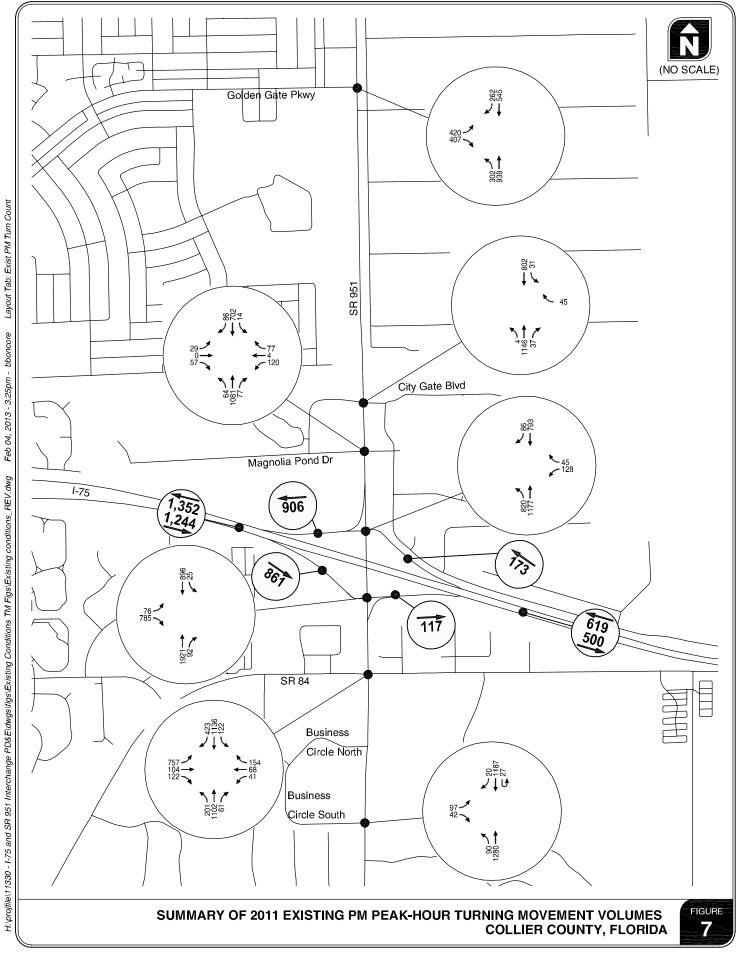


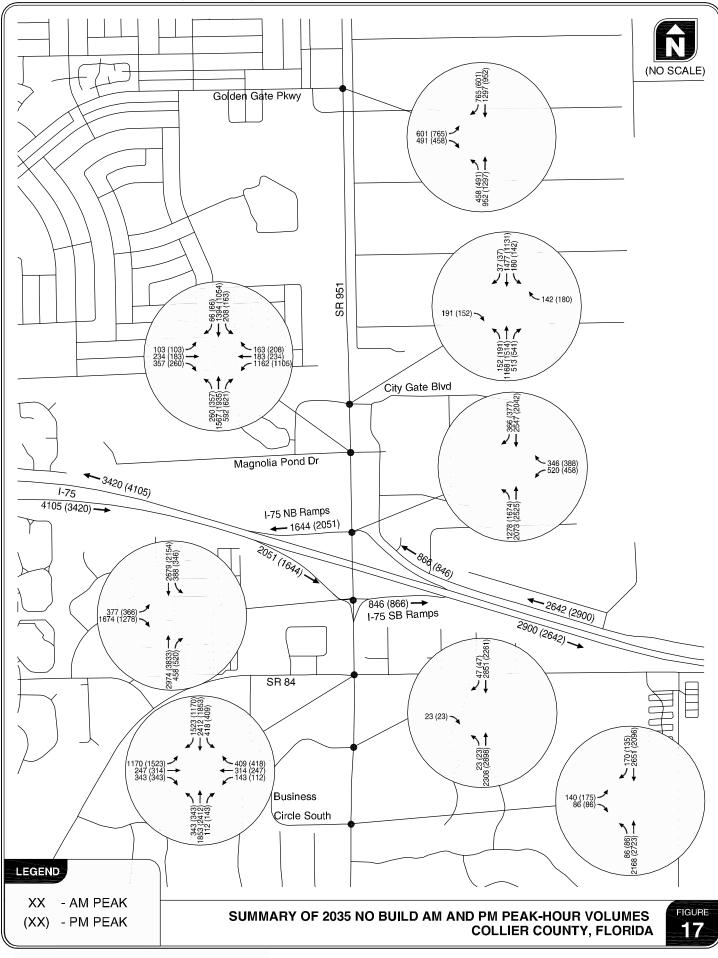


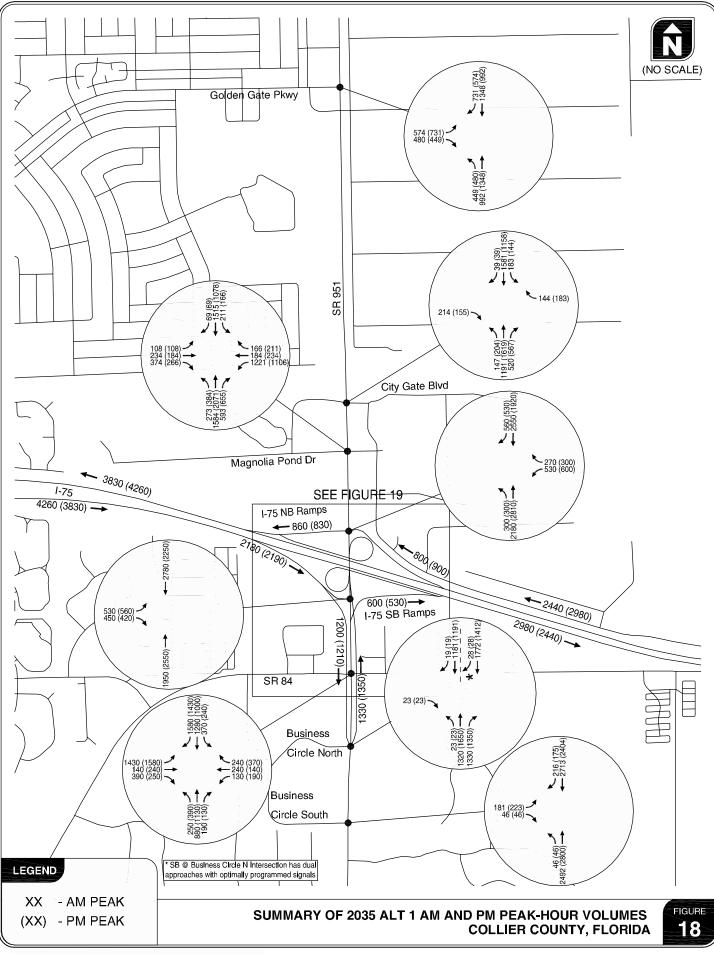

I-75 and SR 951 Ultimate Interchange PD&E Study FM 425843-2-22-01



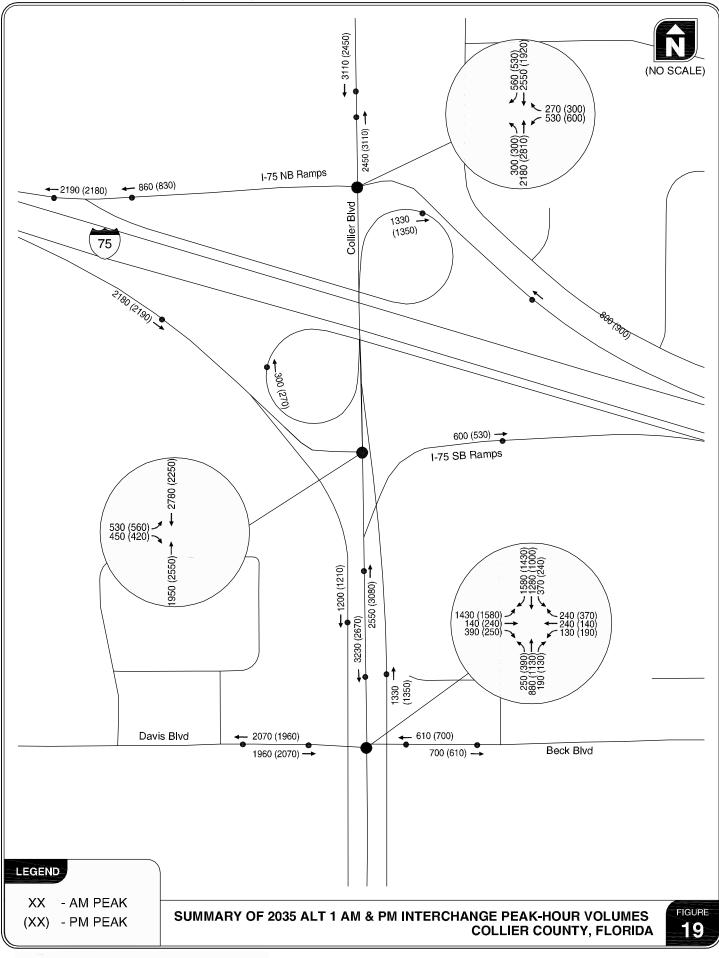
I-75 and SR 951 Ultimate Interchange PD&E Study FM 425843-2-22-01







I-75 and SR 951Ultimate Interchange PD&E Study FM 425843-2-22-01



--

I-75 and SR 951Ultimate Interchange PD&E Study FM 425843-2-22-01

I-75 and SR 951Ultimate Interchange PD&E Study FM 425843-2-22-01

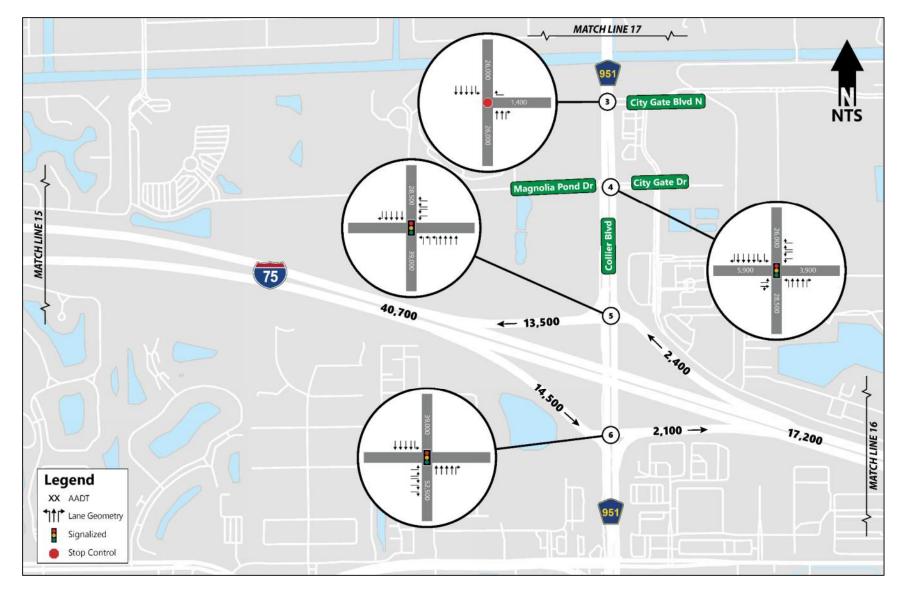


Figure 6-1 (Continued) Existing Year (2019) Lane Geometry and AADT – I-75 and SR 951 (Collier Blvd)

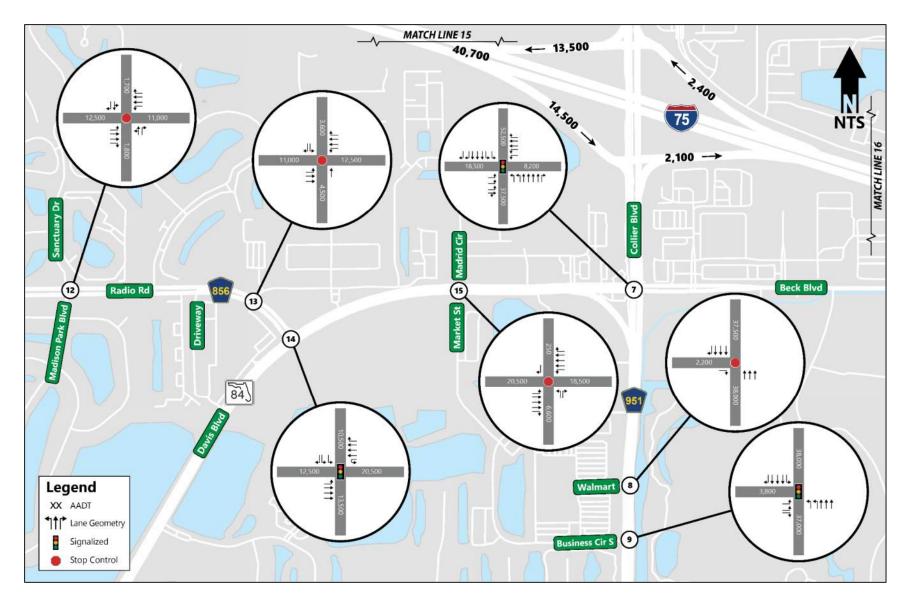
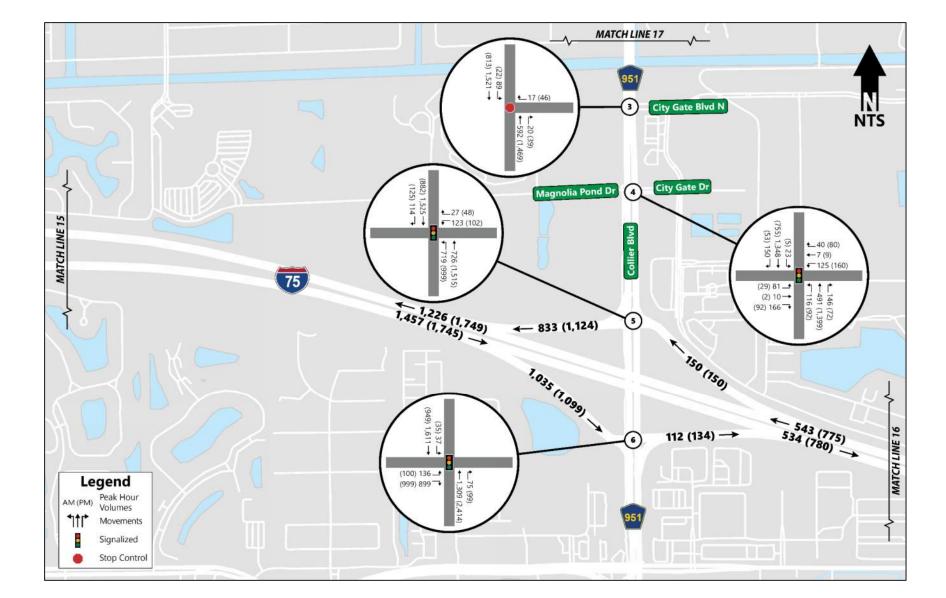
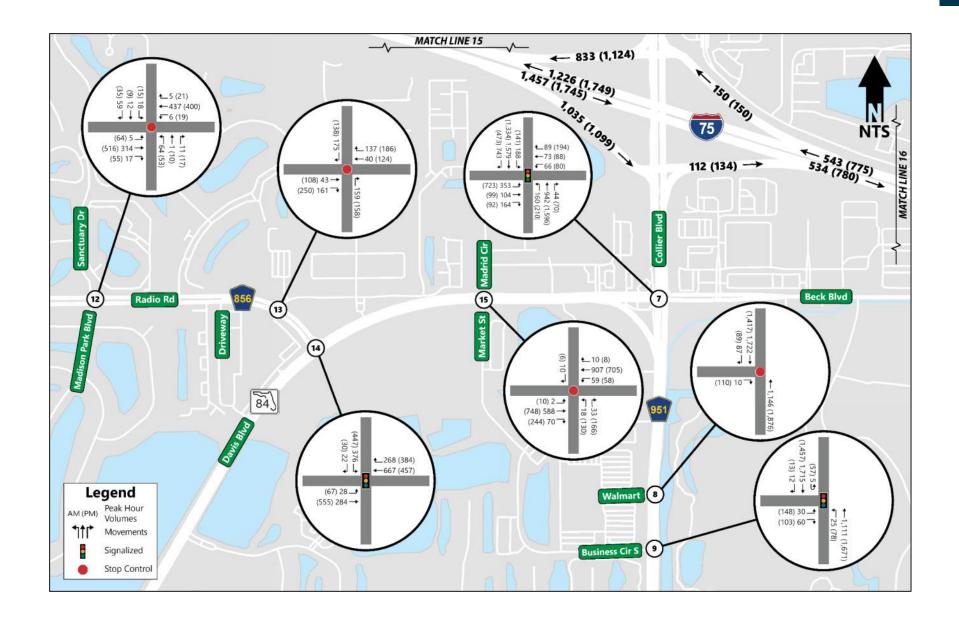



Figure 6-1 (Continued) Existing Year (2019) Lane Geometry and AADT – I-75 and SR 951 (Collier Blvd)


I-75 SOUTH CORRIDOR MASTER PLAN

FOOT DISTRICT ONE INTERSTATE PROJECT

I-75 SOUTH CORRIDOR MASTER PLAN

I-75 SOUTH CORRIDOR MASTER PLAN

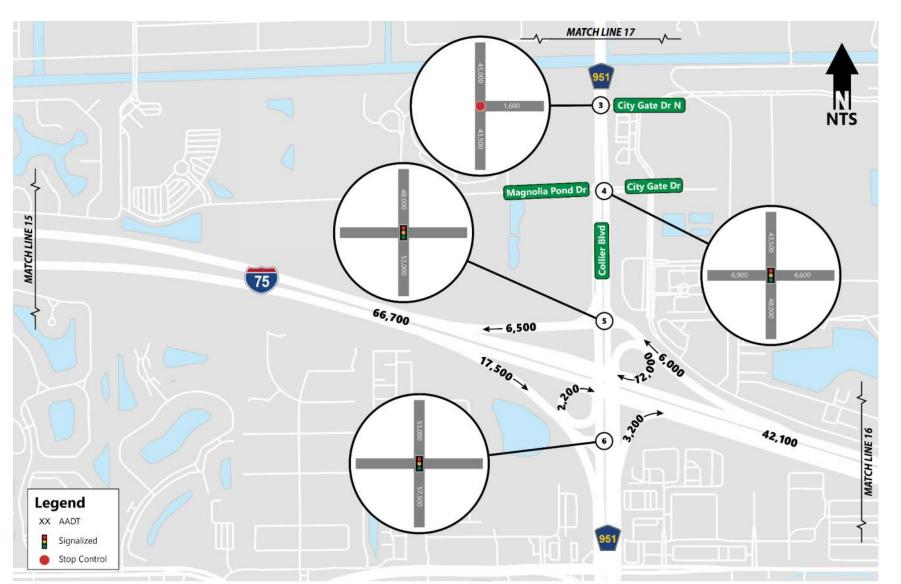


Figure 25: No-Build 2045 AADT - SR 951 (Collier Blvd), North of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

NO-BUILD ANNUAL AVERAGE DAILY TRAFFIC - DESIGN YEAR 2045

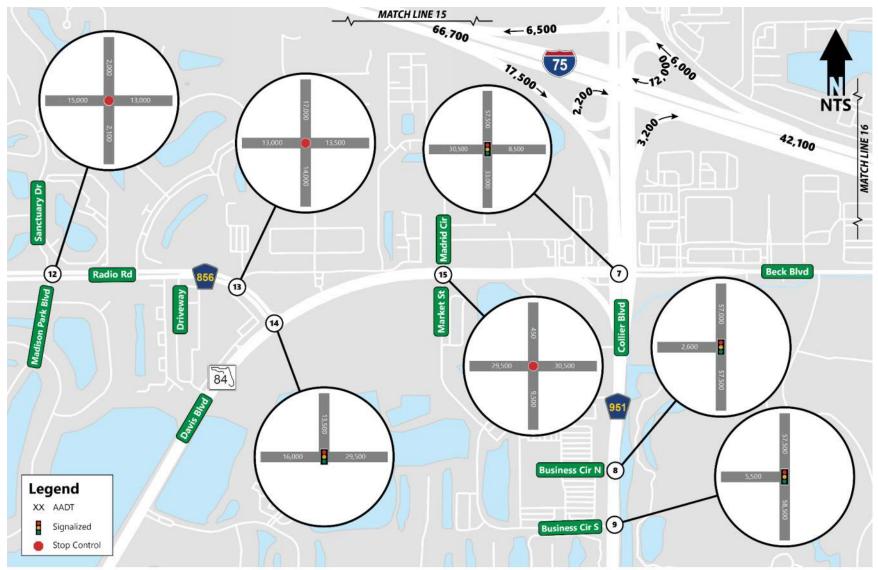


Figure 24: No-Build 2045 AADT - SR 951 (Collier Blvd), South of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

NO-BUILD ANNUAL AVERAGE DAILY TRAFFIC - DESIGN YEAR 2045

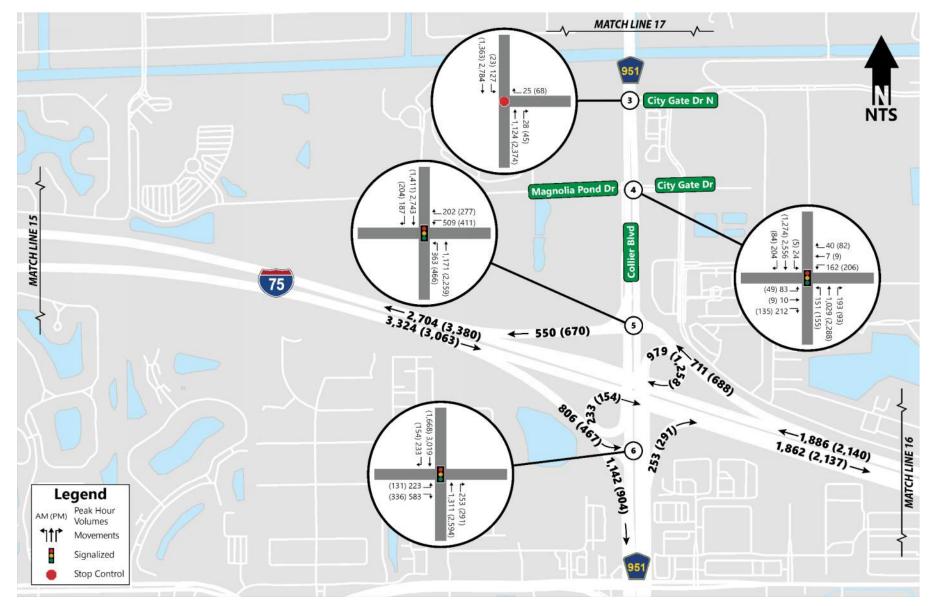


Figure 25: No-Build 2045 DDHV - SR 951 (Collier Blvd), North of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

NO-BUILD DIRECTIONAL DESIGN HOURLY VOLUMES (DDHVS) - DESIGN YEAR 2045

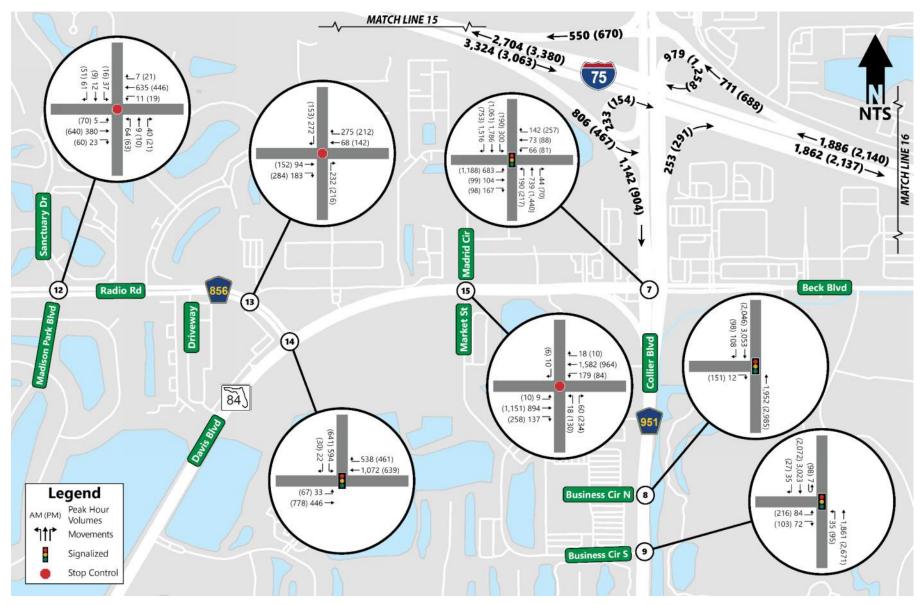


Figure 24: No-Build 2045 DDHV - SR 951 (Collier Blvd), South of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

NO-BUILD DIRECTIONAL DESIGN HOURLY VOLUMES (DDHVS) - DESIGN YEAR 2045

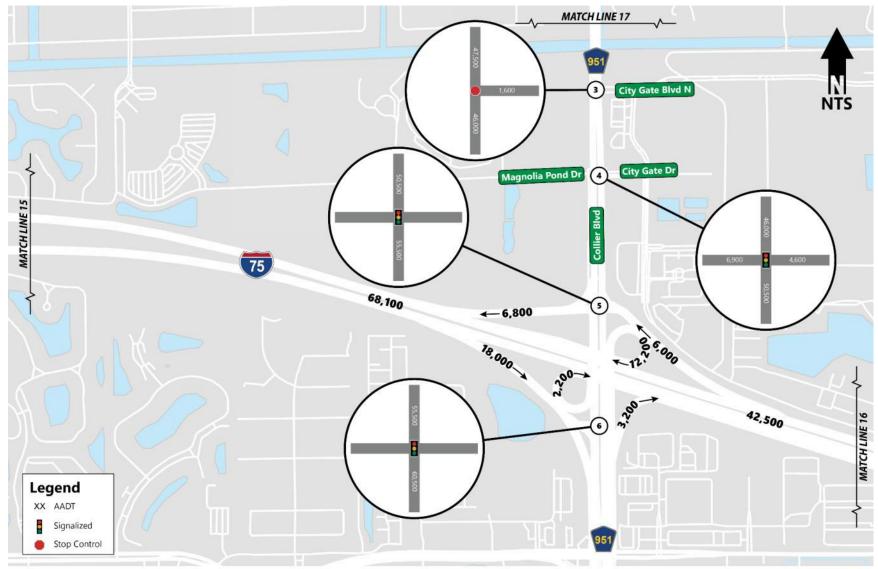


Figure 25: Build 2045 AADT - SR 951 (Collier Blvd), North of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

BUILD ANNUAL AVERAGE DAILY TRAFFIC - DESIGN YEAR 2045

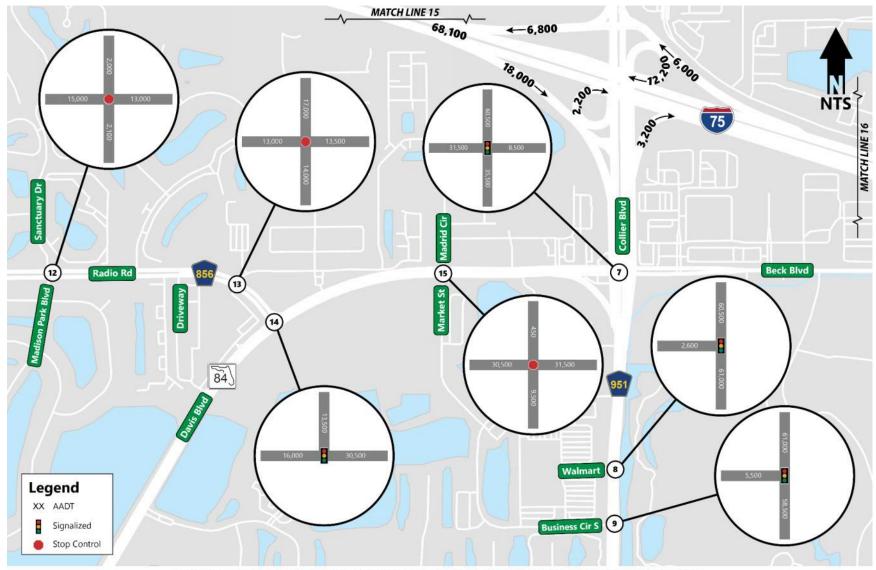


Figure 24: Build 2045 AADT - SR 951 (Collier Blvd), South of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

BUILD ANNUAL AVERAGE DAILY TRAFFIC - DESIGN YEAR 2045

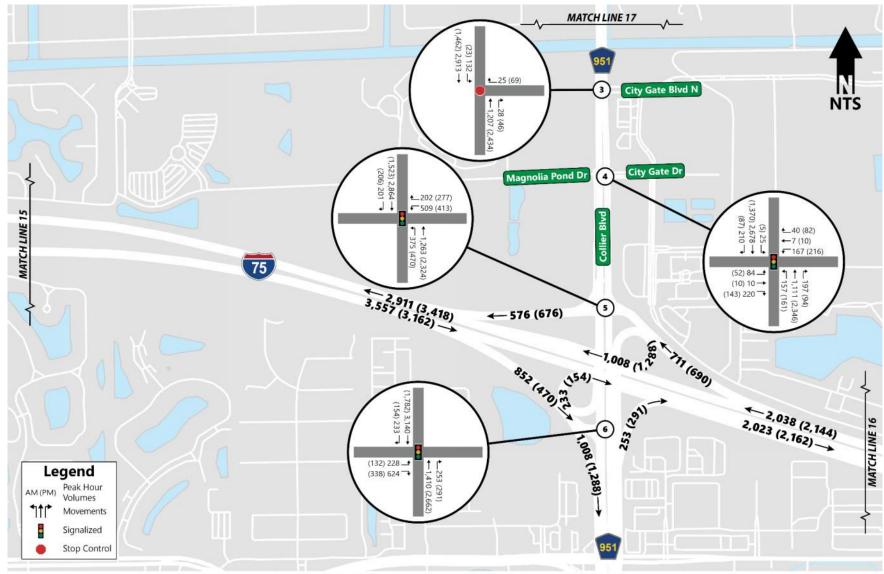


Figure 25: Build 2045 DDHV - SR 951 (Collier Blvd), North of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

BUILD DIRECTIONAL DESIGN HOURLY VOLUMES (DDHVS) - DESIGN YEAR 2045

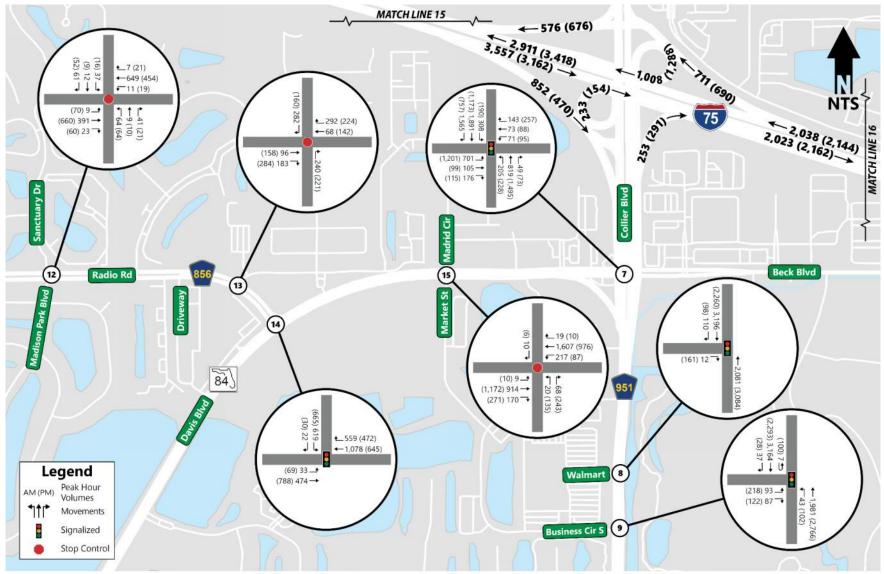


Figure 24: Build 2045 DDHV - SR 951 (Collier Blvd), South of I-75

I-75 SOUTH CORRIDOR MASTER PLAN

BUILD DIRECTIONAL DESIGN HOURLY VOLUMES (DDHVS) - DESIGN YEAR 2045

I-75/SR 93 at SR 951/Collier Boulevard Interchange

Appendix C: FTO Traffic Data

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 03 - COLLIER

SITE: 7013 - SR93/I-75 NB,ON-RAMP FROM SR951/COLLIER BLVD X101

YEAR	AADT	DIRECTION 1		DIRECTION 2	*К FACTO	R D FACTOR	T FACTOR
2021	13500 Т		0	0	10.5	0 99.90	5.60
2020	13500 S		0	0	10.5	0 99.90	8.10
2019	14000 F		0	0	10.5	0 99.90	7.50
2018	13500 C	W	13500	0	9.5	0 99.90	9.10
2017	12500 T		0	0	9.5	0 99.90	6.20
2016	12000 S		0	0	9.5	0 99.90	6.40
2015	11000 F		0	0	9.0	0 99.90	4.70
2014	10500 C	W	10500		9.0	0 99.90	5.50
2013	11500 S		0	0	9.0	0 99.90	3.10
2012	11000 F		0	0	9.0	0 99.90	2.90
2011	10500 C	W	10500	0	9.0	0 99.90	6.30
2010	11000 S		0	0	9.5	0 99.99	3.70
2009	11000 F		0	0	9.4	0 99.99	6.00
2008	11000 C	W	11000	0	9.0	7 99.99	5.10
2007	11500 S		0	0		13.90	
2006	11500 F				8.6	4 99.99	15.50

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 03 - COLLIER

SITE: 7014 - SR93/I-75 SB,OFF-RAMP TO SR951/COLLIER BLVD X101

YEAR	AADT	DIRECTION 1		DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	14000 T		0	0	10.50	99.90	5.60
2020	14000 S		0	0	10.50	99.90	8.10
2019	14500 F		0	0	10.50	99.90	7.50
2018	14000 C	Е	14000	0	9.50	99.90	9.10
2017	13500 т		0	0	9.50	99.90	6.20
2016	13000 S		0	0	9.50	99.90	6.40
2015	12000 F		0	0	9.00	99.90	4.70
2014	11000 C	E	11000		9.00	99.90	5.50
2013	12000 S		0	0	9.00	99.90	3.10
2012	11500 F		0	0	9.00	99.90	2.90
2011	11000 C	E	11000	0	9.00	99.90	6.30
2010	11500 S		0	0	9.50	99.99	3.70
2009	11500 F		0	0	9.40	99.99	6.00
2008	11500 C	Е	11500	0	9.07	99.99	5.10
2007	13000 S		0	0		13.90	
2006	13000 F				8.64	99.99	15.50

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 03 - COLLIER

SITE: 2000 - SR 93/I 75, WEST OF CR 951

YEAR	AADT	DIRECT	ION 1 DI	IRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	45500 C	W 2200)0 E	23500	9.00	55.90	13.30
2020	39000 C	W 1900)0 E	20000	9.00		14.20
2019	45000 C	W 2200)0 E	23000	9.00		12.00
2018	41500 C	W 2050)0 E	21000	9.00	56.00	12.20
2017	43500 C	W 2100)O E	22500	9.00	55.90	11.80
2016	39500 C	W 1950)O E	20000	9.00	56.10	9.90
2015	40500 C	W 2000)O E	20500	9.00	56.50	9.90
2014	36500 C	W 1800)O E	18500	9.00	56.10	11.80
2013	34500 C	W 1700)O E	17500	9.00	56.10	10.10
2012	31000 C	W 1550)0 E	15500	9.00	55.80	12.10
2011	31500 C	W 1550)O E	16000	9.00	55.90	12.60
2010	32500 C	W 1600)O E	16500	9.50	56.47	13.50
2009	34000 C	W 1700)0 E	17000	9.40	55.84	11.20
2008	32500 C	W 1600)O E	16500	9.07	55.79	13.10
2007	33500 C	W 1650)0 E	17000	9.29	52.37	14.80
2006	28500 C	W 1400)0 E	14500	8.64	51.95	17.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 03 - COLLIER

SITE: 7011 - SR93/I-75 SB, ON-RAMP FROM SR951/COLLIER BLVD X101

YEAR	AADT	DIH	RECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	2500 T		0	0	9.00	99.90	5.60
2020	2500 S		0	0	9.00	99.90	8.10
2019	2600 F		0	0	9.00	99.90	7.50
2018	2500 C	W	2500	0	9.00	99.90	9.10
2017	2800 Т		0	0	9.00	99.90	6.20
2016	2700 S		0	0	9.00	99.90	6.40
2015	2500 F		0	0	9.00	99.90	4.70
2014	2300 C	W	2300		9.00	99.90	5.50
2013	2100 S		0	0	9.00	99.90	3.10
2012	2000 F		0	0	9.00	99.90	2.90
2011	2000 C	W	2000	0	9.00	99.90	6.30
2010	2200 S		0	0	9.50	99.99	3.70
2009	2200 F		0	0	9.40	99.99	6.00
2008	2200 C	W	2200	0	9.07	99.99	5.10
2007	2900 S		0	0		13.90	
2006	2900 F				8.64	99.99	15.50

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 03 - COLLIER

SITE: 7012 - SR93/I-75 NB, OFF-RAMP TO SR951/COLLIER BLVD X101

YEAR	AADT	DI	RECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	2200 т		0	0	9.00	99.90	5.60
2020	2200 S		0	0	9.00	99.90	8.10
2019	2300 F		0	0	9.00	99.90	7.50
2018	2200 C	E	2200	0	9.00	99.90	9.10
2017	2500 Т		0	0	9.00	99.90	6.20
2016	2400 S		0	0	9.00	99.90	6.40
2015	2200 F		0	0	9.00	99.90	4.70
2014	2100 C	Е	2100		9.00	99.90	5.50
2013	2000 S		0	0	9.00	99.90	3.10
2012	1900 F		0	0	9.00	99.90	2.90
2011	1900 C	Е	1900	0	9.00	99.90	6.30
2010	2000 S		0	0	9.50	99.99	3.70
2009	2000 F		0	0	9.40	99.99	6.00
2008	2000 C	E	2000	0	9.07	99.99	5.10
2007	3200 S		0	0		13.90	
2006	3200 F				8.64	99.99	15.50

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

I-75/SR 93 at SR 951/Collier Boulevard Interchange

Appendix D: Crash Summary Worksheets and Detailed Fatal

and Pedestrian Police Reports

					Stat	e of Flori	da Depart	ment of T	ransporta	tion					
						CAF	RS CRASH	I SUMM	ARY						
SECTION:			317	5000						STA	TE ROUTE:			/A	
ROADWAY	LIMITS:		I-75 from N	IB CR 886 O	ff Ramp to E	B/WB Ever	glades Blvd (M.P.	41.520	то	53.349	ENGINEER:	PHD		
STUDY PERI	OD:		FROM	1/	2017			то	12/	2017		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	50.412	01/04/17	Wed	1521	Ove	erturn/Rollo	ver	0	1	0	Day	Dry		Keep In Pro	
2	48.263	01/12/17	Thu	1237		er Fixed Ob		0	0	1	Day	Dry		Keep In Pro	
3	49.412	01/13/17	Fri	2230		Rear-End	jeet	0	1	0	Night	Dry		or Negligent	
4	53.081	01/13/17	Fri	2115		Not Coded		0	0	1	Night	Dry		Keep In Pro	
5	46.263	01/22/17	Sun	1018	Ove	erturn/Rollo	ver	0	2	0	Day	Dry	No Co	ontributing A	Action
6	51.694	01/24/17	Tue	2156	G	uardrail Fac	e	0	1	0	Night	Dry	Careless	or Negligent	t Manner
7	50.878	03/10/17	Fri	0825		Right-Turn		0	0	1	Day	Dry		#N/A	
8	50.412	03/20/17	Mon	2206	Oth	er Non-Colli	sion	0	0	1	Night	Dry	Ra	n Off Roadw	/ay
9	52.694	03/22/17	Wed	1802		Sideswipe		0	2	0	Day	Dry	Careless	or Negligent	t Manner
10	50.412	03/26/17	Sun	0631	Ove	erturn/Rollo	ver	0	1	0	Night	Dry	No Co	ontributing A	Action
11	47.405	03/27/17	Mon	0310		Not Coded		0	2	0	Night	Dry		ontributing A	
12	50.412	04/27/17	Thu	1557		Sideswipe		0	0	1	Day	Dry		or Negligent	
13	51.671	05/17/17	Wed	1752		Rear-End		1	3	0	Day	Dry		or Negligent	
14	51.720	05/19/17	Fri	1309		erturn/Rollo		0	1	0	Day	Dry		or Negligent	
15	49.363	05/28/17	Sun	1131		uardrail Fac		0	1	0	Day	Dry		ontributing A	
16	46.451	06/18/17	Sun	0817		uardrail Fac		0	1	0	Day	Dry		or Negligent	
17	48.263	06/20/17	Tue	1430	Ove	erturn/Rollo	ver	0	1	0	Day	Dry		or Negligent	
18	53.220	06/20/17	Tue	1255	- (-	Angle	el 16	0	0	1	Day	Dry		or Negligent	
19	47.412	07/06/17	Thu	1350		uipment Lo		0	0	1	Day	Wet		Contributing	
20	44.190	07/13/17	Thu	1321	G	uardrail Fac	e	0	1	0	Day	Dry		ontributing A	
21	50.412	07/24/17	Mon	0753		Sideswipe		0	0	1	Day	Dry		or Negligent	
22 23	50.412 45.412	07/30/17 07/31/17	Sun Mon	2049 2050		Sideswipe		0	0	1	Night	Wet Wet		or Negligent	
23	45.412	07/31/17	Mon	1430	Incode Atta	Rear-End enuator/Cra	ah Cuahian	0	3	0	Night Day	Wet Wet		or Negligent or Negligent	
24	48.263	08/05/17	Sat	1430		Falling/Shif		0	0	1	Day	Dry		Contributing	
25	49.263	08/03/17	Tue	0407	Struck by	Rear-End	ting cargo	0	2	0	Night	Dry		or Negligent	
20	43.451	08/15/17	Tue	1125	6	uardrail Fac	<u>م</u>	0	0	1	Day	Dry		or Negligent	
28	45.263	08/21/17	Mon	1022		erturn/Rollo		0	1	0	Day	Dry		or Negligent	
29	45.967	08/27/17	Sun	1655		erturn/Rollo		0	0	1	Day	Wet		o Fast for Co	
30	47.412	09/01/17	Fri	2015		Rear-End		0	1	0	Night	Wet		or Negligent	
31	42.451	09/05/17	Tue	1557		Not Coded		0	0	1	Day	Wet		or Negligent	
32	46.451	09/07/17	Thu	1411	Oth	er Non-Colli	sion	0	1	0	Day	Dry		n Off Roadw	
33	48.263	09/13/17	Wed	1352		Sideswipe	-	0	0	1	Day	Wet		Contributing	
34	51.336	10/17/17	Tue	0803		Sideswipe		0	0	1	Day	Dry		or Negligent	
35	50.412	10/22/17	Sun	0959	Oth	er Non-Colli	sion	0	0	1	Day	Dry		ontributing A	
36	53.197	10/28/17	Sat	2200	Oth	er Non-Colli	sion	0	0	1	Night	Wet		or Negligent	
37	50.912	11/27/17	Mon	1555		Sideswipe		0	0	1	Day	Dry		Contributing	
38	52.220	11/28/17	Tue	1820	Cargo/Eq	uipment Lo:	ss or Shift	0	0	1	Night	Dry		ontributing A	
39	47.412	12/08/17	Fri	1517		Rear-End		0	2	0	Day	Dry		or Negligent	
40	48.763	12/25/17	Mon	1850	Other	Non-Fixed	Object	0	0	1	Night	Dry		ontributing A	
41	51.412	12/26/17	Tue	1216		Rear-End		0	2	0	Day	Dry		or Negligent	Manner
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
41	1	20	21	7	0	1	0	1	7	0	0	0	7	0	3
Percent	2.44%	48.78%	51.22%	17.07%	0.00%	2.44%	0.00%	2.44%	17.07%	0.00%	0.00%	0.00%	17.07%	0.00%	7.32%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	28	13	9	32	22	0	0	0	1	0	0	0	2	4	0
Percent	68.29%	31.71%	21.95%	78.05%	53.66%	0.00%	0.00%	0.00%	2.44%	0.00%	0.00%	0.00%	4.88%	9.76%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	476,426		SEGMENT C	RASH RATE:	0.020	CRASHES PE	R MILLION	VEHICLE MI	LES

-					Stat		da Depart RS CRASH			tion					
SECTION:			317	5000						STA	TE ROUTE:		#N	/A	
ROADWAY	LIMITS:		I-75 from N	IB CR 886 Of	ff Ramp to E	B/WB Ever	glades Blvd	M.P.	41.520	то	53.349	ENGINEER:	PHD		
STUDY PERI	IOD:		FROM	1/	2018			то	12/	2018		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	46.371	01/29/18	Mon	2315	Oth	er Non-Colli	sion	0	0	1	Night	Wet	No Co	ontributing A	Action
2	45.451	02/01/18	Thu	1335	Throw	n or Falling	Object	0	0	1	Day	Dry		Contributing	
3	44.451	02/07/18	Wed	1550		Sideswipe		0	2	0	Day	Dry		Contributing	
4	49.951	02/14/18	Wed	1300		Non-Fixed	,	0	0	1	Day	Dry		ontributing A	
5	46.451 51.694	02/16/18 03/03/18	Fri Sat	1940 2008		Non-Fixed er Non-Colli		0	0	1	Night Night	Dry Dry		Contributing n Off Roadw	
7	48.451	03/03/18	Sat	1905	000	Not Coded		0	0	1	Day	Dry		or Negligen	
8	47.451	03/26/18	Mon	0238		Rear-End		0	0	1	Night	Dry		or Negligen	
9	48.451	03/26/18	Mon	0315		Rear-End		0	5	0	Night	Dry		or Negligen	
10	50.905	03/27/18	Tue	1111		Rear-End		0	1	0	Day	Dry		or Negligen	
11	44.462	04/03/18	Tue	0009		Rear-End		0	0	1	Night	Dry		Not Coded	
12	42.405	04/04/18	Wed	0818	0	Guardrail En	d	0	0	1	Day	Dry		#N/A	
13	51.105	04/10/18	Tue	0845		Angle		0	1	0	Day	Dry		#N/A	
14	45.159	04/22/18	Sun	1850	G	iuardrail Fac	ce	0	0	1	Day	Wet		o Fast for Co	
15	50.802	04/23/18	Mon	1239		Ditch		0	1	0	Day	Dry		or Negligen	
16	0.321	05/11/18	Fri	0846		Sideswipe		0	0	1	Day	Dry		Keep In Pro	
17 18	47.405	06/10/18	Sun	1543 0354		uardrail Fac		0	0	1	Day	Wet		or Negligen	
18	48.905 49.405	06/16/18 06/16/18	Sat Sat	0354	6	uardrail Fac Angle	le	0	0	1	Night Night	Dry Wet		ontributing A or Negligen	
20	49.403	06/18/18	Mon	0245		Sideswipe		0	0	1	Day	Dry		Contributing	
20	49.451	06/18/18	Mon	1315		Sideswipe		0	0	1	Day	Dry		or Negligen	
22	47.305	06/22/18	Fri	1605	G	uardrail Fac	e	0	0	1	Day	Dry		ontributing A	
23	50.787	07/02/18	Mon	1349		mbankmen		0	0	1	Day	Wet		ontributing A	
24	50.016	07/03/18	Tue	1636		iuardrail Fac		0	0	1	Day	Wet		ontributing A	
25	45.405	07/08/18	Sun	0540	G	iuardrail Fac	ce	0	0	1	Night	Dry	Careless	or Negligen	t Manner
26	43.405	08/04/18	Sat	2026	G	iuardrail Fac	ce	0	2	0	Night	Wet	Failed To	Keep In Pro	per Lane
27	49.143	08/06/18	Mon	1339		iuardrail Fac		0	1	0	Day	Dry		or Negligen	
28	49.263	08/11/18	Sat	1413		iuardrail Fac		0	0	1	Day	Dry		or Negligen	
29	46.451	08/14/18	Tue	1306		ed Motor Ve		0	0	1	Day	Dry		or Negligen	
30 31	48.451	08/16/18 08/27/18	Thu	1211 1242	G	iuardrail Fac	ce	0	0	1	Day	Dry		or Negligen	
31	52.619 42.405	08/2//18	Mon Sat	1242		Sideswipe iuardrail Fac		0	0	1	Day Day	Dry Wet		recting/Ove or Negligen	
33	44.451	09/10/18	Mon	1040		Non-Fixed		0	0	1	Day	Dry		ontributing A	
33	46.951	09/17/18	Mon	1423		uipment Lo:		0	0	1	Day	Dry		Contributing	
35	44.659	09/20/18	Thu	1550		uardrail Fac		0	0	1	Day	Dry		Contributing	
36	42.451	10/01/18	Mon	0446		Guardrail En		1	0	0	Night	Dry		or Negligen	
37	43.412	10/01/18	Mon	0446		uardrail Fac		0	0	1	Night	Dry		or Negligen	
38	45.202	10/12/18	Fri	2036	G	iuardrail Fac	ce	0	3	0	Night	Dry		or Negligen	
39	41.905	10/14/18	Sun	1619		Angle		0	0	1	Day	Dry		or Negligen	
40	46.451	11/08/18	Thu	1911		Angle		0	4	0	Night	Dry		or Negligen	
41	46.451	11/15/18	Thu	0405		Rear-End		0	3	0	Night	Wet	Careless	or Negligen	t Manner
42	43.190	11/23/18	Fri	1836		Sideswipe		0	0	1	Night	Dry	Others	#N/A	Action
43 44	48.190	12/07/18 12/13/18	Fri Thu	0410 2220	0	Rear-End erturn/Rollo	wor	0	3	0	Night	Dry		Contributing Contributing	
44	46.251 52.694	12/13/18	Sun	1315		Sideswipe	iver	0	0	1	Night Day	Dry Dry	Other	_ontributing #N/A	ACTION
40	J2.094	12/23/18	Juli	1313		Jueswipe		U	U	Backed	Day	ыу	Fixed	#N/A Ran into	
Total No.	Fatal	Injuny	PDO	Rear-End	Head-On	Anglo	Loft, Turn	Right-Turn	Sideswine	Into	Pod /Piko	Parked Car		Water	Other
45	1 Falai	Injury 13	31	6	0	Angle 4	0	0	7	0	0	1	Object 18	0	1
Percent	2.22%	28.89%	68.89%	13.33%	0.00%	8.89%	0.00%	0.00%	15.56%	0.00%	0.00%	2.22%	40.00%	0.00%	2.22%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper			Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	27	18	9	36	20	0	0	0	1	0	0	0	1	2	0
Percent	60.00%	40.00%	20.00%	80.00%	44.44%	0.00%	0.00%	0.00%	2.22%	0.00%	0.00%	0.00%	2.22%	4.44%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	86,418		SEGMENT C	RASH RATE	0.121	CRASHES PE	ER MILLION	VEHICLE MI	LES

					Stat		da Depart			tion					
						CAI	RS CRASH	I SUIVIIVI						1	
SECTION:				5000		-					TE ROUTE:		#N	/A	
ROADWAY						B/WB Ever	glades Blvd (-	то	53.349	ENGINEER:			
STUDY PERI	IOD:		FROM	1/	2019			TO	12/	2019		COUNTY:	-		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE	Ξ	FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	0.323	01/17/19	Thu	0735		Sideswipe		0	0	1	Day	Dry		Keep In Pro	-
2	46.153	01/19/19	Sat	1700	G	uardrail Fac	e.	0	1	0	Day	Dry		or Negligent	
3	49.451	01/22/19	Tue	1720		Sideswipe		0	0	1	Day	Dry		Keep In Pro	
4	46.405	01/25/19	Fri	1428	G	uardrail Fac	ce	0	1	0	Day	Dry		n Off Roadw	
5	42.202	02/03/19	Sun	1814	G	uardrail Fac	ce	0	0	1	Night	Dry	No Co	ontributing A	ction
6	48.451	02/16/19	Sat	0200		Rear-End		0	0	1	Night	Dry		or Negligent	
7	47.451	02/24/19	Sun	2105	Other	Non-Fixed	Object	0	0	1	Night	Dry	No Co	ontributing A	ction
8	49.451	03/08/19	Fri	1502		Not Coded		0	0	1	Day	Dry	Failed To	Keep In Pro	per Lane
9	0.323	03/08/19	Fri	1015		Sideswipe		0	0	1	Day	Dry	lr	nproper Tur	n
10	48.451	04/04/19	Thu	0412		Sideswipe		0	0	1	Night	Dry	Failed To	Keep In Pro	per Lane
11	49.451	04/20/19	Sat	2100		Sideswipe		0	0	1	Night	Dry	Careless	or Negligent	Manner
12	43.451	05/04/19	Sat	0849		Sideswipe		0	0	1	Day	Dry		#N/A	
13	49.451	05/05/19	Sun	1535	Ove	erturn/Rollo	ver	0	1	0	Day	Dry	No Co	ontributing A	ction
14	0.323	05/24/19	Fri	2035		Rear-End		0	1	0	Night	Dry	Follo	wed too Clo	sely
15	50.905	05/27/19	Mon	1420		Angle		0	0	1	Day	Dry	Careless	or Negligent	: Manner
16	52.451	05/30/19	Thu	0852	G	uardrail Fac	ce	0	1	0	Day	Dry	Swe	rved Or Avo	ided
17	42.202	06/08/19	Sat	1706	G	uardrail Fac	ce	0	0	1	Day	Wet		or Negligent	
18	42.451	06/08/19	Sat	0948	G	uardrail Fac	ce	0	1	0	Day	Wet	Careless	or Negligent	Manner
19	53.194	06/24/19	Mon	1530		Sideswipe		0	0	1	Day	Dry		or Negligent	
20	49.951	06/28/19	Fri	0733		Sideswipe		0	0	1	Day	Dry		proper Pass	
21	47.405	07/01/19	Mon	2120		erturn/Rollo		0	0	1	Night	Dry		or Negligent	
22	47.412	07/01/19	Mon	1237		uardrail Fac		0	1	0	Day	Dry	Ir	nproper Tur	n
23	47.705	07/01/19	Mon	0842	Parke	ed Motor Ve	ehicle	0	1	0	Day	Dry	Careless	or Negligent	Manner
24	52.694	08/02/19	Fri	2120		erturn/Rollc		0	1	0	Night	Dry		n Off Roadw	
25	49.451	08/04/19	Sun	1229		ee (Standir		0	0	1	Day	Wet		or Negligent	
26	50.432	08/13/19	Tue	1456	Other	Non-Fixed	Object	0	0	1	Day	Dry		ontributing A	
27	50.905	08/18/19	Sun	1624		Animal		0	1	0	Day	Wet		ontributing A	
28	51.405	09/06/19	Fri	0544		Sideswipe		0	1	0	Night	Dry		Keep In Pro	
29	48.405	09/08/19	Sun	0005		Fence		0	1	0	Night	Dry		or Negligent	
30	0.321	09/12/19	Thu	1458		Sideswipe		0	5	0	Day	Dry		Contributing	
31	0.323	09/18/19	Wed	0944		Sideswipe		0	0	1	Day	Dry		ontributing A	
32	50.263	09/30/19	Mon	1723		Rear-End		0	1	0	Night	Dry	Careless	or Negligent	Manner
33	51.405	10/04/19	Fri	1400		Sideswipe		0	0	1	Day	Dry		#N/A	
34	47.405	10/21/19	Mon	1433		Sideswipe		0	0	1	Day	Dry		or Negligent	
35	49.451	10/31/19	Thu	1407		Ditch	,	0	0	1	Day	Dry		or Negligent	
36	50.135	11/13/19	Wed	0239	Tr	ee (Standin	ig)	0	1	0	Night	Wet		n Off Roadw	
37	43.451	11/15/19	Fri	1244		Rear-End		0	0	1	Day	Wet		or Negligent	
38	49.451	12/05/19	Thu	1222	01	Rear-End	<u>.</u>	0	0	1	Day	Dry		or Negligent	
39	53.306	12/09/19	Mon	1145		Non-Fixed	,	0	0	1	Day	Dry		ontributing A	
40	45.405	12/26/19	Thu	0340		uardrail Fac		0	1	0	Night	Dry	Careless	or Negligent	wanner
41	48.405	12/27/19	Fri	1213	G	uardrail Fac	ce	0	0	1	Day	Dry		#N/A	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle		Right-Turn		Into	Ped/Bike	Parked Car	Object	Water	Other
41	0	16	25	5	0	1	0	0	13	0	0	1	13	0	1
Percent	0.00%	39.02%	60.98%	12.20%	0.00%	2.44%	0.00%	0.00%	31.71%	0.00%	0.00%	2.44%	31.71%	0.00%	2.44%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	28	13	6	35	17	0	2	0	0	1	0	0	3	2	0
Percent	<u>68.29%</u>	31.71%	14.63%	85.37%	41.46%	0.00%	4.88%	0.00%	0.00%	2.44%	0.00%	0.00%	7.32%	4.88%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	-7,482,971		SEGMENT C	RASH RATE:	-0.001	CRASHES PE	R MILLION	VEHICLE MI	ES

					Stat		da Depart RS CRASH			tion					
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		I-75 from N	IB CR 886 Of	f Ramp to E	B/WB Everg	glades Blvd	M.P.	41.520	то	53.349	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2020			то	12/	2020		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME	1	CRASH TYPE	E	FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	49.451	01/03/20	Fri	0508	Oth	er Fixed Ob	ject	0	0	1	Night	Dry	Careless	or Negligent	t Manner
2	52.694	01/16/20	Thu	1250		Rear-End		0	0	1	Day	Dry		#N/A	
3	44.405	02/02/20	Sun	2246	A: 11	Rear-End		0	1	0	Night	Dry		or Negligent	
4 5	51.405	02/21/20 03/09/20	Fri	1510		Falling/Shif		0	0	1	Day	Dry		Contributing	
6	43.451 48.451	03/09/20	Mon Tue	0639 0615	Cargo/Eq	uipment Lo: Sideswipe	ss or Shift	0	0	1	Night Night	Dry Dry	Other	Contributing #N/A	Action
7	51.694	03/24/20	Sat	0013		Animal		0	0	1	Night	Dry	No Co	ontributing A	ction
8	48.263	04/25/20	Sat	0005	Utility	Pole/Light S	upport	0	0	1	Night	Wet	110 00	#N/A	locion
9	0.321	05/01/20	Fri	1645	,	Pole/Light S		0	1	0	Day	Dry	Careless	or Negligent	t Manner
10	42.504	05/05/20	Tue	0948		Guardrail En		0	1	0	Day	Dry		or Negligent	
11	51.439	05/23/20	Sat	1450	G	iuardrail Fac	ce	0	0	1	Day	Wet	Drove to	o Fast for Co	onditions
12	0.000	06/09/20	Tue	1210		Rear-End		0	0	1	Day	Dry		Not Coded	
13	0.321	06/09/20	Tue	2131		Angle		0	2	0	Night	Dry		Ran Red Ligh	
14	48.451	06/14/20	Sun	0309		Rear-End		0	2	0	Night	Dry		or Negligent	
15	50.694	06/18/20	Thu	0725	Ove	erturn/Rollo	over	0	0	1	Day	Dry		rved Or Avo	
16	43.690	06/20/20	Sat	2225		Ditch		0	0	1	Night	Dry		Contributing	
17 18	43.405 47.451	06/22/20 06/26/20	Mon Fri	2210 0230		Pedestrian Rear-End		1	0	0	Night Night	Dry Dry		ontributing A or Negligent	
18	49.451	07/03/20	Fri	0230		Sideswipe		0	0	1	Day	Dry		or Negligent	
20	45.405	07/03/20	Mon	2021	G	iuardrail Fac	°P	0	1	0	Night	Dry		or Negligent	
20	45.451	07/10/20	Fri	1224		iuardrail Fac		0	0	1	Day	Dry		or Negligent	
22	45.405	08/12/20	Wed	0439		Angle		0	2	0	Night	Dry		Side or Wro	
23	0.309	08/13/20	Thu	1117		Rear-End		0	0	1	Day	Dry	Other	Contributing	Action
24	0.323	08/13/20	Thu	1051		Angle		0	0	1	Day	Dry		Ran Red Ligh	t
25	48.451	08/19/20	Wed	0624		Rear-End		0	1	0	Night	Dry	Careless	or Negligent	t Manner
26	41.693	08/27/20	Thu	2120	G	iuardrail Fac	ce	0	0	1	Night	Dry		ontributing A	
27	43.451	08/31/20	Mon	1727		Rear-End		0	0	1	Day	Dry	Careless	or Negligent	t Manner
28	46.451	09/08/20	Tue	2035	Struck by	Falling/Shif	ting Cargo	0	0	1	Night	Dry		#N/A	
29 30	52.395	09/13/20	Sun	1351		Sideswipe		0	0	1	Day	Wet	Failed to	#N/A	Of Mary
30	53.194 45.451	09/22/20 09/23/20	Tue Wed	1430 1908		Rear-End iuardrail Fac		0	0	1	Day Night	Dry Dry		o Yield Right or Negligent	
32	43.451	10/06/20	Tue	0712	9	Sideswipe	le l	0	0	1	Day	Dry		Keep In Pro	
33	52.694	10/00/20	Wed	1240		Angle		0	1	0	Day	Dry		Keep In Pro	
34	47.451	10/18/20	Sun	1751	(Guardrail En	d	0	0	1	Day	Dry		proper Back	
35	45.451	11/07/20	Sat	1554		Not Coded		0	0	1	Day	Wet		o Fast for Co	
36	48.951	11/07/20	Sat	1547	G	iuardrail Fac		0	0	1	Day	Wet		or Negligent	
37	49.405	11/11/20	Wed	1353		Rear-End		0	1	0	Day	Wet		or Negligent	
38	43.451	11/21/20	Sat	0100		Angle		0	0	1	Night	Dry		or Negligent	
39	48.263	11/23/20	Mon	0828	_	Rear-End	,	0	1	0	Day	Dry		or Negligent	
40	49.405	11/27/20	Fri	1816		ree (Standin		0	2	0	Night	Dry		or Negligent	
41 42	52.694 48.451	12/03/20	Thu Mon	0820 0315	Uther	Non-Fixed Rear-End	Object	0	0	1	Day Night	Dry Dry		ontributing A	
42	48.451 49.451	12/14/20 12/16/20	Wed	0315		Animal		0	0	1	Night Night	Dry Dry		Contributing Ontributing A	
43	49.451	12/18/20	Fri	1020		Rear-End		0	1	0	Day	Dry		or Negligent	
44	46.451	12/18/20	Wed	1606	0.14	erturn/Rollo	ver	0	0	1	Day	Dry		ontributing A	
15		1-, 23, 20		1000	50			<u> </u>	<u> </u>	Backed	Suy	- iy	Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
45	1	13	31	13	0	5	0	0	4	0	1	0	13	0	1
Percent	2.22%	28.89%	68.89%	28.89%	0.00%	11.11%	0.00%	0.00%	8.89%	0.00%	2.22%	0.00%	28.89%	0.00%	2.22%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	24	21	6	39	18	1	0	2	2	0	0	0	0	4	1
Percent	53.33%	46.67%	13.33%	86.67%	40.00%	2.22%	0.00%	4.44%	4.44%	0.00%	0.00%	0.00%	0.00%	8.89%	2.22%
				TOTAL EN	TERING VEH	ICLES/ADT:	-7,482,971		SEGMENT C	RASH RATE:	-0.001	CRASHES PE	ER MILLION	VEHICLE MI	LES

					Stat	e of Flori	da Depart	ment of T	ransporta	tion					
						CAF	RS CRASH		ARY						
SECTION:				5000						STA	TE ROUTE:			I/A	
ROADWAY	LIMITS:		I-75 from N	IB CR 886 Of	ff Ramp to E	B/WB Ever	glades Blvd (M.P.	41.520	то	53.349	ENGINEER:	PHD		
STUDY PERI	IOD:		FROM	1/	2021			то	12/	2021		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP	DAY /	WET / DRY	CONT	RIBUTING C	AUSE
NO.	WILL FUST	DATE	DAI	TIVIL				TATAL	INJUNILS	DAM	NIGHT	WLI / DRI	(V	'EHICLE ONL	Y)
1	52.183	01/19/21	Tue	1020	Oth	er Fixed Ob	ject	0	2	0	Day	Dry		recting/Over	
2	42.451	01/22/21	Fri	1621		Not Coded		0	1	0	Day	Dry	Over-Cor	recting/Over	r-Steering
3	43.451	02/05/21	Fri	1858		Sideswipe		0	0	1	Night	Dry		or Negligent	
4	42.405	02/18/21	Thu	1038	-	uardrail Fac	-	0	1	0	Day	Dry		or Negligent	
5	42.222	03/06/21	Sat	0340	Concr	ete Traffic E	Barrier	1	0	0	Night	Dry		ed Posted S	
6	44.157	03/20/21	Sat	0324		Rear-End		0	3	0	Night	Dry		or Negligent	
7	49.719	04/03/21	Sat	0820		er Fixed Ob	,	0	0	1	Day	Dry		or Negligent	
8	50.640	04/07/21	Wed	2350	Other	Non-Fixed	Object	0	4	0	Night	Dry		ontributing A	
9	46.405	04/11/21		Sun 0355 Angle 0 2 0 Night Dry Careless or Negligent Manne											
10 51.186 04/19/21 Mon 0932 Sideswipe 0 5 0 Day									,		0				
11	50.423	04/30/21	Fri	-	Othe		sion	-	-	-	Night	Dry		ontributing A	
12 13	50.460	04/30/21 06/05/21	Fri Sat	2230 1733		Angle		0	1 2	0	Night	Dry Wet		Contributing	
13	52.405 46.451	07/14/21	Wed	2115		Angle uardrail Fac		0	0	1	Day Night	Wet		or Negligent or Negligent	
14	51.451	07/14/21	Fri	1715	G	Fence	e	0	1	0	Day	Dry		or Negligent	
15	49.405	07/10/21	Sat	2138	Concr	ete Traffic E	Parrior	0	0	1	Night	Dry		or Negligent	
10	49.405	07/24/21	Sat	1153		fic Sign Sup		0	0	1	Day	Dry		or Negligent	
18	48.665	08/07/21	Sat	0828	1101	Sideswipe	port	0	2	0	Day	Dry		Keep In Pro	
19	48.405	08/12/21	Thu	1444		Angle		1	2	0	Day	Dry		eckless or A	
20	43.905	08/14/21	Sat	0720	G	uardrail Fac	°e	0	2	0	Day	Dry		or Negligent	
20	45.405	08/17/21	Tue	1501		uardrail Fac	-	0	0	1	Day	Wet		o Fast for Co	
22	47.451	09/11/21	Sat	1742		uardrail Fac		0	0	1	Day	Dry		ontributing A	
23	49.978	09/12/21	Sun	1720		Angle		0	3	0	Dav	Wet		rved Or Avo	
24	50.394	09/12/21	Sun	1725	G	uardrail Fac	e	0	0	1	Dav	Wet		or Negligent	
25	53.194	09/16/21	Thu	1408	G	uardrail Fac	e	0	0	1	Day	Wet		o Fast for Co	
26	42.405	09/20/21	Mon	0405	G	uardrail Fac	e	0	0	1	Night	Dry	Careless	or Negligent	t Manner
27	43.405	09/22/21	Wed	1306	Oth	er Non-Colli	sion	0	0	1	Day	Wet	No Co	ontributing A	Action
28	43.405	11/12/21	Fri	1325		Rear-End		0	0	1	Day	Dry	Careless	or Negligent	t Manner
29	42.405	12/23/21	Thu	0514	G	uardrail Fac	e	0	2	0	Night	Dry	No Co	ontributing A	Action
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
29	2	16	12	2	0	5	0	0	3	0	0	0	15	0	1
Percent	6.90%	55.17%	41.38%	6.90%	0.00%	17.24%	0.00%	0.00%	10.34%	0.00%	0.00%	0.00%	51.72%	0.00%	3.45%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	18	11	7	22	14	0	0	0	3	0	0	1	0	1	0
Percent	62.07%	37.93%	24.14%	75.86%	48.28%	0.00%	0.00%	0.00%	10.34%	0.00%	0.00%	3.45%	0.00%	3.45%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	-7,482,971		SEGMENT C	RASH RATE:	-0.001	CRASHES PE	R MILLION	VEHICLE MI	LES

							1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		ransporta RASH SU		,				
SECTION:			317	5000	SIGNAL			LINCSC	казп зо		TE ROUTE:		#N	I/A	
	NG ROADW	AY:		B CR 886 Of	f Ramp to E	B/WB Ever	zlades Blvd	M.P.	41.520	то	53.349	ENGINEER:		<u>,,,</u>	
STUDY PER			FROM		2017			то		2017		COUNTY:			
	-		-						,	PROP	DAY /			RIBUTING C	AUSE
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	DAM	NIGHT	WET / DRY	(V	HICLE ONL	Y)
42	0.000	01/07/17	Sun	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
43	0.000	01/30/17	Tue	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
44	0.000	04/04/17	Wed	0000		uardrail Fac		0	0	1	Unknown	Other		Not Coded	
45	0.000	04/09/17	Mon	0000		uardrail Fac		0	0	1	Unknown	Other		Not Coded	
46	0.000	05/03/17	Thu	0001		n or Falling Juardrail Fac		0	0	1	Unknown	Other		Not Coded	
47	0.000	05/09/17 05/13/17	Wed Sun	0001	6	Sideswipe	.c	0	0	1	Unknown Unknown	Other Other		Not Coded	
48	0.000	05/22/17	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
50	0.000	05/30/17	Wed	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
51	0.000	05/30/17	Wed	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
52	0.000	06/25/17	Mon	0001		Rear-End		0	2	0	Unknown	Other		Not Coded	
53	0.000	07/01/17	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
54	0.000	07/05/17	Thu	0001		erturn/Rollo		0	2	0	Unknown	Other		Not Coded	
55	0.000	07/08/17	Sun	0000	Parke	ed Motor Ve	ehicle	0	1	0	Unknown	Other		Not Coded	
56	0.000	07/18/17	Wed	0000		Animal		0	0	1	Unknown	Other		Not Coded	
57 58	0.000	07/24/17	Tue Fri	0001	Utility	Pole/Light S	upport	0	1	0	Unknown Unknown	Other Other		Not Coded	
58	0.000	08/03/17 08/05/17	Sun	0000		Sideswipe Sideswipe		0	0	0	Unknown	Other		Not Coded	
60	0.000	08/05/17	Mon	0000	6	juardrail Fac	<u>م</u>	0	0	1	Unknown	Other		Not Coded	
61	0.000	08/20/17	Mon	0001	-	iuardrail Fac	-	0	0	1	Unknown	Other		Not Coded	
62	0.000	08/30/17	Thu	0001	Ove	erturn/Rollo	ver	0	1	0	Unknown	Other		Not Coded	
63	0.000	09/02/17	Sun	0001	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
64	0.000	09/23/17	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
65	0.000	10/03/17	Wed	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
66	0.000	10/08/17	Mon	0000	Struck by	Falling/Shif	ting Cargo	0	0	1	Unknown	Other		Not Coded	
67	0.000	10/10/17	Wed	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
68 69	0.000	10/27/17 11/06/17	Sat Tue	0000		Sideswipe Fence		0	1	0	Unknown Unknown	Other Other		Not Coded	
70	0.000	12/25/17	Tue	0000	Throw	n or Falling	Ohiect	0	0	1	Unknown	Other		Not Coded	
70	0.000	12/23/17	Tuc	0001	THIOW	nonnannig	Object	0	0	Backed	UTIKITOWIT	Other	Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
29	0	7	22	5	0	0	0	0	8	0	0	1	7	0	0
Percent	0.00%	24.14%	75.86%	17.24%	0.00%	0.00%	0.00%	0.00%	27.59%	0.00%	0.00%	3.45%	24.14%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	#DIV/0!		SPOT C	RASH RATE:	#DIV/0!	CRASHES PE	ER MILLION	ENTERING V	EHICLES

									ransporta RASH SU		,				
SECTION:			317	5000							TE ROUTE:		#N	/A	
	NG ROADW	AY:			ff Ramp to E	B/WB Ever	glades Blvd	M.P.	41.520	то		ENGINEER:			
STUDY PER			FROM		2018			то	-	2018		COUNTY:			
										PROP	DAY /			RIBUTING C	AUSE
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	DAM	NIGHT	WET / DRY		EHICLE ONL	
46	0.000	01/23/18	Wed	0001		Rear-End		0	1	0	Unknown	Other	(.	Not Coded	.,
47	0.000	01/29/18	Tue	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
48	0.000	02/19/18	Tue	0001	-	Animal		0	0	1	Unknown	Other		Not Coded	
49	0.000	03/08/18	Fri	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
50	0.000	03/21/18	Thu	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
51	0.000	03/26/18	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
52	0.000	03/26/18	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
53	0.000	03/26/18	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
54	0.000	04/06/18	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
55	0.000	04/09/18	Tue	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
56	0.000	04/11/18	Thu	0001		Rear-End		0	3	0	Unknown	Other		Not Coded	
57	0.000	04/14/18	Sun	0000	G	uardrail Fac	ce	0	1	0	Unknown	Other		Not Coded	
58	0.000	04/14/18	Sun	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
59	0.000	04/23/18	Tue	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
60	0.000	05/05/18	Sun	0001	Concr	ete Traffic E	Barrier	0	0	1	Unknown	Other		Not Coded	
61	0.000	05/16/18	Thu	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
62	0.000	05/21/18	Tue	0000		uardrail Fac		0	1	0	Unknown	Other		Not Coded	
63	0.000	05/23/18	Thu	0001		n or Falling		0	0	1	Unknown	Other		Not Coded	
64	0.000	06/14/18	Fri	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
65	0.000	06/21/18	Fri	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
66	0.000	06/22/18	Sat	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
67	0.000	07/13/18	Sat	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
68	0.000	07/26/18	Fri	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
69 70	0.000	08/17/18 08/18/18	Sat	0000	Other	Sideswipe Non-Fixed	01.1	0	0	1	Unknown Unknown	Other Other		Not Coded	
70	0.000	09/09/18	Sun Mon	0000	Other	Sideswipe	Object	0	0	1	Unknown	Other		Not Coded	
71	0.000	09/09/18	Thu	0000		Animal		0	0	1	Unknown	Other		Not Coded	
72	0.000	09/12/18	Thu	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
74	0.000	10/03/18	Thu	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
75	0.000	10/06/18	Sun	0000	Ove	erturn/Rollo	ver	0	0	1	Unknown	Other		Not Coded	
76	0.000	10/10/18	Thu	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
77	0.000	10/20/18	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
78	0.000	11/05/18	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
79	0.000	11/07/18	Thu	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
80	0.000	11/08/18	Fri	0001	G	uardrail Fac	e	0	2	0	Unknown	Other		Not Coded	
81	0.000	12/07/18	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
82	0.000	12/10/18	Tue	0000	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
83	0.000	12/24/18	Tue	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
84	0.000	12/29/18	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
39	0	5	34	14	0	0	0	0	10	0	0	0	8	0	0
Percent	0.00%	12.82%	87.18%	35.90%	0.00%	0.00%	0.00%	0.00%	25.64%	0.00%	0.00%	0.00%	20.51%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	#DIV/0!		SPOT C	RASH RATE:	#DIV/0!	CRASHES PE	R MILLION	ENTERING V	EHICLES

									ransporta RASH SU		,				
SECTION:			317	5000	JUNALI						TE ROUTE:		#N	I/A	
INTERSECTI	NG ROADW	AY:	I-75 from N	IB CR 886 Of	ff Ramp to E	B/WB Ever	glades Blvd	M.P.	41.520	то	53.349	ENGINEER:	PHD		
STUDY PERI	OD [.]		FROM	1/	2019		<u> </u>	то	-	2019		COUNTY:	#N/Δ		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE	:	FATAL	INJURIES	PROP	DAY /	WET / DRY		TRIBUTING C	AUSE
NO.	IVILLE I OST	DAIL	DAI	TIME			-		INJOINES	DAM	NIGHT	WEI / DIT	(\	EHICLE ONL	.Y)
42	0.000	01/03/19	Fri	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
43	0.000	01/07/19	Tue	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
44	0.000	01/14/19	Tue	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
45	0.000	01/17/19	Fri	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
46	0.000	02/21/19	Fri	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
47	0.000	03/14/19	Fri	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
48	0.000	04/22/19	Tue	0000	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
49	0.000	05/03/19	Sat	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
50	0.000	05/17/19	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
51	0.000	05/22/19	Thu	0001	G	uardrail Fac	e	0	1	0	Unknown	Other		Not Coded	
52	0.000	06/03/19	Tue	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
53	0.000	07/25/19	Fri	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
54	0.000	07/30/19	Wed	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
55	0.000	09/03/19	Wed	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
56	0.000	09/28/19	Sun	0000	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
57	0.000	10/20/19	Mon	0001	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
58	0.000	10/29/19	Wed	0000	G	uardrail Fac	ce	0	0	1	Unknown	Other		Not Coded	
59	0.000	11/02/19	Sun	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
60	0.000	11/24/19	Mon	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
61	0.000	11/27/19	Thu	0000	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
62	0.000	11/29/19	Sat	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
63	0.000	12/02/19	Tue	0000	Ove	erturn/Rollo	ver	0	1	0	Unknown	Other		Not Coded	
64	0.000	12/06/19	Sat	0000		uardrail Fac		0	0	1	Unknown	Other		Not Coded	
65	0.000	12/08/19	Mon	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
66	0.000	12/11/19	Thu	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
67	0.000	12/21/19	Sun	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
		-,,				pc		-	-	Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
26	0	2	24	7	0	Ő	0	0	9	0	0	0	8	0	0
Percent	0.00%	7.69%	92.31%	26.92%	0.00%	0.00%	0.00%	0.00%	34.62%	0.00%	0.00%	0.00%	30.77%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
					TERING VEH					RASH RATE:		CRASHES PE			
									51010	NATE.	#010/0:	0			

							da Depart				,				
SECTION:			217	5000		CON Dr					TE ROUTE:		#1	I/A	
	NG ROADW	۸.۷۰		IB CR 886 Of	f Dome to F		aladas Plud	MD	41.520	TO	53.349	ENGINEER:			
		AT.				D/ WD EVel	giaues bivu		-		33.349	-			
STUDY PER	IOD:		FROM	1/	2020			TO	12/	2020	-	COUNTY:			
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		FRIBUTING C /EHICLE ONL	
46	0.000	01/03/20	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
47	0.000	01/23/20	Fri	0000		Animal		0	0	1	Unknown	Other		Not Coded	
48	0.000	02/11/20	Wed	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
49	0.000	03/04/20	Thu	0001	G	iuardrail Fac	e	0	0	1	Unknown	Other		Not Coded	
50	0.000	03/08/20	Mon	0000	G	iuardrail Fac	e	0	0	1	Unknown	Other		Not Coded	
51	0.000	03/15/20	Mon	0001		Not Coded		0	0	1	Unknown	Other		Not Coded	
52	0.000	03/20/20	Sat	0000		Animal		0	0	1	Unknown	Other		Not Coded	
53	0.000	05/02/20	Sun	0000	Oth	er Non-Colli	sion	0	0	1	Unknown	Other		Not Coded	
54	0.000	06/03/20	Thu	0001		Rear-End		0	1	0	Unknown	Other		Not Coded	
55	0.000	06/26/20	Sat	0000	Other	Non-Fixed (Object	0	0	1	Unknown	Other		Not Coded	
56	0.000	07/22/20	Thu	0001		Jackknife		0	0	1	Unknown	Other		Not Coded	
57	0.000	07/23/20	Fri	0001	G	iuardrail Fac	e	0	0	1	Unknown	Other		Not Coded	
58	0.000	08/14/20	Sat	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
59	0.000	11/13/20	Sat	0000		Sideswipe		0	2	0	Unknown	Other		Not Coded	
60	0.000	11/29/20	Mon	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
61	0.000	12/05/20	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
62	0.000	12/21/20	Tue	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
63	0.000	12/28/20	Tue	0001	Struck by	Falling/Shift	ting Cargo	0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
18	0	2	16	3	0	0	0	0	5	0	0	0	3	0	1
Percent	0.00%	11.11%	88.89%	16.67%	0.00%	0.00%	0.00%	0.00%	27.78%	0.00%	0.00%	0.00%	16.67%	0.00%	5.56%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	#DIV/0!		SPOT C	RASH RATE:	#DIV/0!	CRASHES PI	ER MILLION	ENTERING V	EHICLES

	NG ROADW				State of Florida Depart SIGNAL FOUR DATA ANA f Ramp to EB/WB Everglades Blvd 2021		LYTICS C	RASH SU	MMARY	,					
STUDY PERIC	NG ROADW			5000							TE ROUTE:			I/A	
No. N	00.	AY:	I-75 from N FROM			B/WB Ever	glades Blvd	M.P. TO	41.520	TO 2021	53.349	ENGINEER: COUNTY:			
+	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY	CONT	RIBUTING C	
30	0.000	01/01/21	Sat	0001	Struck by	Falling/Shift	ting Cargo	0	0	1	Unknown	Other	(.	Not Coded	.,
31	0.000	01/06/21	Thu	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
32	0.000	01/16/21	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
33 34	0.000	01/20/21 01/22/21	Thu Sat	0001	Other	Non-Fixed Rear-End	Object	0	0	1	Unknown Unknown	Other Other		Not Coded	
35	0.000	01/22/21	Tue	0000	Ov	erturn/Rollo	ver	0	1	0	Unknown	Other		Not Coded	
36	0.000	01/25/21	Tue	0001		Rear-End		0	2	0	Unknown	Other		Not Coded	
37	0.000	01/26/21	Wed	0001	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
38	0.000	02/25/21	Fri	0000	Oth	er Non-Colli	sion	0	0	1	Unknown	Other		Not Coded	
39	0.000	02/28/21	Mon	0000		Rear-End		0	2	0	Unknown	Other		Not Coded	
40	0.000	03/03/21 03/08/21	Thu Tue	0001		Sideswipe Fence		0	0	1	Unknown Unknown	Other Other		Not Coded	
42	0.000	03/11/21	Fri	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
43	0.000	03/22/21	Tue	0000		Rear-End	,	0	0	1	Unknown	Other		Not Coded	
44	0.000	03/23/21	Wed	0000		Rear-End		0	4	0	Unknown	Other		Not Coded	
45	0.000	03/24/21	Thu	0001	10.00	Angle		0	0	1	Unknown	Other		Not Coded	
46 47	0.000	03/31/21 04/18/21	Thu Mon	0001	Utility	Pole/Light S Sideswipe	upport	0	0	1	Unknown Unknown	Other Other	<u> </u>	Not Coded	
47	0.000	04/18/21	Tue	0000		Rear-End		0	3	0	Unknown	Other	<u></u>	Not Coded	
48	0.000	05/28/21	Sat	0001		Sideswipe		0	1	0	Unknown	Other		Not Coded	
50	0.000	05/31/21	Tue	0001		Rear-End		0	1	0	Unknown	Other		Not Coded	
51	0.000	06/04/21	Sat	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
52	0.000	06/10/21	Fri	0001	Other	Non-Fixed	Ubject	0	0	1	Unknown	Other Othor		Not Coded	
53 54	0.000	06/21/21 06/24/21	Tue Fri	0001	6	Sideswipe	e	0	0	1	Unknown Unknown	Other Other		Not Coded	
55	0.000	06/24/21	Mon	0000		Guardrail Face Sideswipe Overturn/Rollover		0	0	1	Unknown	Other		Not Coded	
56	0.000	06/28/21	Tue	0001	Ov	Sideswipe Overturn/Rollover Rear-End			0	1	Unknown	Other		Not Coded	
57	0.000	06/29/21	Wed	0001				0	0	1	Unknown	Other		Not Coded	
58	0.000	07/03/21	Sun	0001	G	iuardrail Fac	ce 🛛	0	0	1	Unknown	Other		Not Coded	
59	0.000	07/05/21	Tue	0000	Othor	Rear-End Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
60 61	0.000	07/13/21 07/18/21	Wed Mon	0001		ree (Standin		0	0	1	Unknown Unknown	Other Other		Not Coded	
62	0.000	07/18/21	Mon	0001		iuardrail Fac		0	0	1	Unknown	Other		Not Coded	
63	0.000	07/20/21	Wed	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
64	0.000	07/31/21	Sun	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
65	0.000	08/05/21	Fri	0000	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
66 67	0.000	08/05/21 08/08/21	Fri Mon	0000		Rear-End Sideswipe		0	0	1	Unknown Unknown	Other Other		Not Coded	
68	0.000	08/08/21	Mon	0000	Т	ree (Standin	g)	0	0	1	Unknown	Other		Not Coded	
69	0.000	08/08/21	Mon	0001		Rear-End	0/	0	0	1	Unknown	Other		Not Coded	
70	0.000	08/09/21	Tue	0000	G	iuardrail Fac	ce 🛛	0	0	1	Unknown	Other		Not Coded	
71	0.000	08/11/21	Thu	0000		Not Coded		0	0	1	Unknown	Other		Not Coded	
72 73	0.000	08/15/21 08/20/21	Mon Sat	0000	-	iuardrail Fac Non-Fixed	-	0	0	1	Unknown Unknown	Other Other		Not Coded	
73	0.000	08/20/21	Wed	0000		Non-Fixed		0	0	1	Unknown	Other		Not Coded	
75	0.000	08/26/21	Fri	0000		Non-Fixed		0	0	1	Unknown	Other		Not Coded	
76	0.000	09/01/21	Thu	0000		Non-Fixed	,	0	0	1	Unknown	Other		Not Coded	
77	0.000	09/06/21	Tue	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
78	0.000	09/12/21	Mon	0001	-	iuardrail Fac	<u> </u>	0	0	1	Unknown	Other		Not Coded	
79 80	0.000	09/13/21 09/16/21	Tue Fri	0000		n or Falling er Non-Colli		0	0	1	Unknown Unknown	Other Other	<u> </u>	Not Coded	
80	0.000	09/16/21	Sat	0001	Un	Sideswipe	51011	0	0	1	Unknown	Other	<u> </u>	Not Coded	
82	0.000	09/24/21	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
83	0.000	10/04/21	Tue	0001	G	iuardrail Fac	ce 🛛	0	2	0	Unknown	Other		Not Coded	
84	0.000	10/12/21	Wed	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
85	0.000	10/22/21	Sat	0001		Rear-End		0	0	1	Unknown	Other Other		Not Coded	
86 87	0.000	10/28/21 11/08/21	Fri Tue	0000	Struck by	Sideswipe Falling/Shift	ting Cargo	0	0	1	Unknown Unknown	Other Other		Not Coded	
88	0.000	11/10/21	Thu	0001	JULICE DY	Sideswipe		0	0	1	Unknown	Other		Not Coded	
89	0.000	11/18/21	Fri	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
90	0.000	11/20/21	Sun	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
91	0.000	12/03/21	Sat	0000		Rear-End		0	1	0	Unknown	Other		Not Coded	
92 93	0.000	12/10/21	Sat Tue	0000	Ov	erturn/Rollo	ver	0	0	1	Unknown Unknown	Other Other		Not Coded	
93	0.000	12/13/21 12/14/21	Wed	0000		Sideswipe Ditch		0	1	0	Unknown	Other	1	Not Coded	
95	0.000	12/19/21	Mon	0001	G	iuardrail Fac	.e	0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
66	0	11	55	16	0	1	0	0	16	0	0	0	13	0	1
Percent	0.00%	16.67%	83.33%	24.24%	0.00%	1.52%	0.00%	0.00%	24.24%	0.00%	0.00%	0.00%	19.70%	0.00%	1.52%
Contrib. Cause	Day	Night	Wet	Dry	Careless Driving	FTYRW	Improper Turn	Ran Red	Exceeded Speed	Improper Passing	Disreg Cntl Dev	Erratic/	Ran off Road	DUI	Wrong Way
Total	0 0	Night 0	0	0 0	0 0	0	0 0	Light 0	o speed	Passing	0	Aggress 0	коао 0	0	vvay 0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	#DIV/0!		SPOT C	RASH RATE:	#DIV/01	CRASHES PE	R MILLION	ENTERING V	EHICLES

					Stat	te of Flori	da Depart	ment of T	ransporta	tion					
						CAF	RS CRASH	I SUMM	ARY						
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to Wes	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2017			то	12/	2017		COUNTY:	#N/A		
N-		DATE	DAV	TINAE		CRASH TYPE		EATAL		PROP	DAY /		CON	FRIBUTING C	AUSE
No.	MILE POST	DATE	DAY	TIME		CRASH TTPE		FATAL	INJURIES	DAM	NIGHT	WET / DRY	(\	EHICLE ONL	Y)
1	50.412	01/04/17	Wed	1521	Ove	erturn/Rollo	ver	0	1	0	Day	Dry	Failed To	Keep In Pro	per Lane
2	50.878	03/10/17	Fri	0825		Right-Turn		0	0	1	Day	Dry		#N/A	
3	50.412	03/20/17	Mon	2206	Oth	er Non-Colli	sion	0	0	1	Night	Dry	Ra	n Off Roadw	ay
4	50.412	03/26/17	Sun	0631	Ove	erturn/Rollo	ver	0	1	0	Night	Dry	No Co	ontributing A	ction
5	50.412	04/27/17	Thu	1557		Sideswipe		0	0	1	Day	Dry	Careless	or Negligent	Manner
6	50.412	07/24/17	Mon	0753		Sideswipe		0	0	1	Day	Dry	Careless	or Negligent	Manner
7	50.412	07/30/17	Sun	2049		Sideswipe		0	0	1	Night	Wet		or Negligent	
8	50.412	10/22/17	Sun	0959	Oth	er Non-Colli	sion	0	0	1	Day	Dry	No Co	ontributing A	ction
9	50.912	11/27/17	Mon	1555		Sideswipe		0	0	1	Day	Dry	Other	Contributing	Action
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
9	0	2	7	0	0	0	0	1	4	0	0	0	0	0	0
Percent	0.00%	22.22%	77.78%	0.00%	0.00%	0.00%	0.00%	11.11%	44.44%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	6	3	1	8	3	0	0	0	0	0	0	0	1	0	0
Percent	66.67%	33.33%	11.11%	88.89%	33.33%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	11.11%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	60,772		SEGMENT C	RASH RATE:	0.269	CRASHES PE		VEHICLE MI	ES

					Sta			ment of T		tion					
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2018			то	12/	2018		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	49.951	02/14/18	Wed	1300	Other	Non-Fixed	Object	0	0	1	Day	Dry	No Co	ontributing A	Action
2	50.905	03/27/18	Tue	1111		Rear-End		0	1	0	Day	Dry	Careless	or Negligent	t Manner
3	50.802	04/23/18	Mon	1239		Ditch		0	1	0	Day	Dry	Careless	or Negligent	t Manner
4	50.787	07/02/18	Mon	1349		Embankmen	t	0	0	1	Day	Wet	No Co	ontributing A	Action
5	50.016	07/03/18	Tue	1636	(Guardrail Fac	e	0	0	1	Day	Wet	No Co	ontributing A	Action
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Backed Into	Ped/Bike	Parked Car	Fixed Object	Ran into Water	Other
5	0	2	3	1	0	0	0	0	0	0	0	0	3	0	0
Percent	0.00%	40.00%	60.00%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	60.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	5	0	2	3	2	0	0	0	0	0	0	0	0	0	0
Percent	100.00%	0.00%	40.00%	60.00%	40.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	237,571		SEGMENT C	RASH RATE:	0.038	CRASHES PI	ER MILLION	VEHICLE MI	LES

					Sta		da Depart RS CRASH		ransporta ARV	tion					
SECTION:			317	5000		CAI				STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:	PHD	<u>.</u>	
STUDY PER	IOD:		FROM	1/	2019			то	12/	2019		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		FRIBUTING C /EHICLE ONL	
1	50.905	05/27/19	Mon	1420		Angle		0	0	1	Day	Dry	Careless	or Negligent	t Manner
2	49.951	06/28/19	Fri	0733		Sideswipe		0	0	1	Day	Dry	Im	proper Pass	ing
3	50.432	08/13/19	Tue	1456	Other	Non-Fixed	Object	0	0	1	Day	Dry		ontributing A	
4	50.905	08/18/19	Sun	1624		Animal		0	1	0	Day	Wet	No Co	ontributing A	Action
5	50.263	09/30/19	Mon	1723		Rear-End		0	1	0	Night	Dry	Careless	or Negligent	t Manner
6	50.135	11/13/19	Wed	0239	T	ree (Standin	g)	0	1	0	Night	Wet	Ra	in Off Roadw	/ay
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
6	0	3	3	1	0	1	0	0	1	0	0	0	1	0	0
Percent	0.00%	50.00%	50.00%	16.67%	0.00%	16.67%	0.00%	0.00%	16.67%	0.00%	0.00%	0.00%	16.67%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	4	2	2	4	2	0	0	0	0	1	0	0	1	0	0
Percent	66.67%	33.33%	33.33%	66.67%	33.33%	0.00%	0.00%	0.00%	0.00%	16.67%	0.00%	0.00%	16.67%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	3,364		SEGMENT C	RASH RATE:	3.236	CRASHES PI	ER MILLION	VEHICLE MI	LES

					Stat	te of Flori	da Depart	ment of T	ransporta	tion					
						CAF	RS CRASH	I SUMM	ARY						
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2020			то	12/	2020		COUNTY:	#N/A		
Na		DATE	DAY	TIME		CRASH TYPE		FATAL		PROP	DAY /		CON	FRIBUTING C	AUSE
No.	MILE POST	DATE	DAY	TIVE		INJURIES	DAM	NIGHT	WET / DRY	(\	EHICLE ONL	.Y)			
1	50.694	06/18/20	Thu	0725	Ove	erturn/Rollo	ver	0	0	1	Day	Dry	Swe	rved Or Avo	ided
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Percent	100.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

					Sta			ment of T		tion					
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2021			то	12/	2021		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	50.640	04/07/21	Wed	2350	Other	Non-Fixed	Object	0	4	0	Night	Dry	No Co	ontributing A	Action
2	50.423	04/30/21	Fri	2228	Oth	er Non-Colli	sion	0	8	0	Night	Dry	No Co	ontributing A	Action
3	50.460	04/30/21	Fri	2230		Angle		0	1	0	Night	Dry	Other (Contributing	Action
4	49.978	09/12/21	Sun	1720		Angle		0	3	0	Day	Wet	Swe	rved Or Avo	ided
5	50.394	09/12/21	Sun	1725	Ģ	iuardrail Fac	e	0	0	1	Day	Wet	Careless	or Negligent	t Manner
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Backed Into	Ped/Bike	Parked Car	Fixed Object	Ran into Water	Other
5	0	4	1	0	0	2	0	0	0	0	0	0	1	0	0
Percent	0.00%	80.00%	20.00%	0.00%	0.00%	40.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	20.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	2	3	2	3	1	0	0	0	0	0	0	0	0	0	0
Percent	40.00%	60.00%	40.00%	60.00%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	3,364		SEGMENT C	RASH RATE:	3.236	CRASHES PE	ER MILLION	VEHICLE MI	LES

					Stat SIGNAL			ment of T LYTICS C			,				
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to Wes	t of SR 951 I	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2017			то	12/	2017		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		FRIBUTING C /EHICLE ONL	
1	0.000	05/13/17	Sun	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
2	0.000	08/03/17	Fri	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
3	0.000	10/03/17	Wed	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
4	0.000	12/25/17	Tue	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
4	0	0	4	0	0	0	0	0	3	0	0	0	0	0	0
Percent	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	75.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	ICLES/ADT:	#DIV/0!		SEGMENT C	RASH RATE:	#DIV/0!	CRASHES PI	ER MILLION	VEHICLE MI	LES

					Sta	te of Flori	da Depart	ment of T	ransporta	tion					
					SIGNAL	FOUR DA	TA ANA	LYTICS C	RASH SU	MMARY	,				
SECTION:			317	5000						STA	TE ROUTE:		#N	N/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 H	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PERI	OD:		FROM	1/	2018			то	12/	2018		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		TRIBUTING C /EHICLE ONL	
1	0.000	01/29/18	Tue	0001	Throw	n or Falling	Object	0	0	1	Unknown	Other		Not Coded	
2	0.000	03/21/18	Thu	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
3	0.000	04/14/18	Sun	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
4	0.000	07/26/18	Fri	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
5	0.000	08/17/18	Sat	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
6	0.000	08/18/18	Sun	0000	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
7	0.000	09/09/18	Mon	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
8	0.000	11/07/18	Thu	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Backed Into	Ped/Bike	Parked Car	Fixed Object	Ran into Water	Other
8	0	0	8	2	0	Ŭ	0	0	4	0	0	0	0	0	0
Percent	0.00%	0.00%	100.00%	25.00%	0.00%	0.00%	0.00%	0.00%	50.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	#DIV/0!		SEGMENT C	RASH RATE:	#DIV/0!	CRASHES PI	ER MILLION	VEHICLE MI	LES

									ransporta						
SECTION:			317	5000	SIGNAL			LYTICS C	RASH SU		TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:			ast of SR 95	1 WB On Ra	mp to West	t of SR 951 E	M.P.	49.530	то	51.040	ENGINEER:			
STUDY PER	IOD:		FROM	1/	2019			то	12/	2019		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		FRIBUTING C /EHICLE ONL	
1	0.000	01/14/19	Tue	0001	G	iuardrail Fac	e	0	0	1	Unknown	Other		Not Coded	
2	0.000	07/25/19	Fri	0001	G	iuardrail Fac	e	0	0	1	Unknown	Other		Not Coded	
3	0.000	07/30/19	Wed	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
4	0.000	11/02/19	Sun	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
5	0.000	11/24/19	Mon	0000		Rear-End		0	0	1	Unknown	Other		Not Coded	
6	0.000	11/27/19	Thu	0000	Other	Non-Fixed	Object	0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
6	0	0	6	2	0	0	0	0	1	0	0	0	2	0	0
Percent	0.00%	0.00%	100.00%	33.33%	0.00%	0.00%	0.00%	0.00%	16.67%	0.00%	0.00%	0.00%	33.33%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	#DIV/0!		SEGMENT C	RASH RATE:	#DIV/0!	CRASHES PE	R MILLION	VEHICLE MI	_ES

								ment of T			,				
SECTION:			317	5000							TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	amp to West	t of SR 951 I	M.P.	49.530	TO	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2020			то	12/	2020		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE	E	FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		FRIBUTING C	
1	0.000	03/20/20	Sat	0000		Animal		0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	#DIV/0!		SEGMENT C	RASH RATE:	#DIV/0!	CRASHES P	ER MILLION	VEHICLE MI	ES

					Sta	te of Flori	da Depart	ment of T	ransporta	tion					
					SIGNAL I	FOUR DA	TA ANA	LYTICS C	RASH SU	MMARY	,				
SECTION:			317	5000						STA	TE ROUTE:		#N	I/A	
ROADWAY	LIMITS:		i-75 From E	ast of SR 95	1 WB On Ra	mp to West	t of SR 951 H	M.P.	49.530	то	51.040	ENGINEER:	PHD		
STUDY PER	IOD:		FROM	1/	2021			то	12/	2021		COUNTY:	#N/A		
No.	MILE POST	DATE	DAY	TIME		CRASH TYPE		FATAL	INJURIES	PROP DAM	DAY / NIGHT	WET / DRY		RIBUTING C	
1	0.000	03/23/21	Wed	0000		Rear-End		0	4	0	Unknown	Other		Not Coded	
2	0.000	03/31/21	Thu	0001	Utility	Pole/Light S	upport	0	0	1	Unknown	Other		Not Coded	
3	0.000	04/19/21	Tue	0000		Rear-End		0	3	0	Unknown	Other		Not Coded	
4	0.000	05/31/21	Tue	0001		Rear-End		0	1	0	Unknown	Other		Not Coded	
5	0.000	06/04/21	Sat	0001		Rear-End		0	0	1	Unknown	Other		Not Coded	
6	0.000	06/21/21	Tue	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
7	0.000	06/24/21	Fri	0001	Ģ	Guardrail Fac	ce	0	1	0	Unknown	Other		Not Coded	
8	0.000	06/28/21	Tue	0001	Ov	erturn/Rollo	ver	0	0	1	Unknown	Other		Not Coded	
9	0.000	09/24/21	Sat	0001		Sideswipe		0	0	1	Unknown	Other		Not Coded	
10	0.000	11/08/21	Tue	0000	Struck by	Falling/Shift	ting Cargo	0	0	1	Unknown	Other		Not Coded	
11	0.000	11/18/21	Fri	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
12	0.000	12/13/21	Tue	0000		Sideswipe		0	0	1	Unknown	Other		Not Coded	
										Backed			Fixed	Ran into	
Total No.	Fatal	Injury	PDO	Rear-End	Head-On	Angle	Left-Turn	Right-Turn	Sideswipe	Into	Ped/Bike	Parked Car	Object	Water	Other
12	0	4	8	4	0	0	0	0	4	0	0	0	2	0	0
Percent	0.00%	33.33%	66.67%	33.33%	0.00%	0.00%	0.00%	0.00%	33.33%	0.00%	0.00%	0.00%	16.67%	0.00%	0.00%
Contrib.					Careless		Improper	Ran Red	Exceeded	Improper	Disreg Cntl	Erratic/	Ran off		Wrong
Cause	Day	Night	Wet	Dry	Driving	FTYRW	Turn	Light	Speed	Passing	Dev	Aggress	Road	DUI	Way
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percent	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
				TOTAL EN	TERING VEH	IICLES/ADT:	#DIV/0!		SEGMENT C	RASH RATE:	#DIV/0!	CRASHES PE	ER MILLION	VEHICLE MII	.ES

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18 UPDATE X

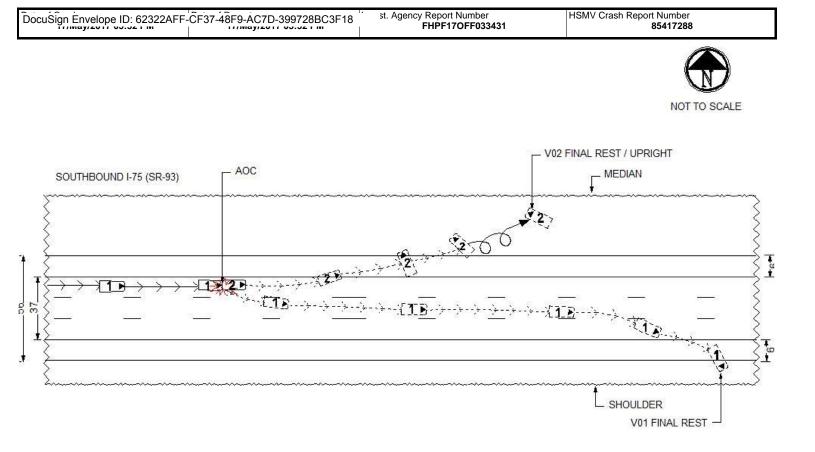
LONG FORM SHORT FORM

HIGHWAY SAFETY & MOTOR VEHICLES, TRAFFIC CRASH RECORDS NEIL KIRKMAN BUILDING, TALLAHASSEE, FL 32399-0537

(Electronic	Version

Date of 0 17/Mag	Crash y/2017 05	:52 PM	Time of 0 17/May	Crash 1/2017 05:	52 PM		of Report /Apr/2018			vest. Age			nber F03343 ′	1	HS	SMV C	Crash R		Number 5417288		
CRASH	IDENT	FIERS							l						1						
County (Code 54	City Cod	e 52	County of		OLLI	ER		Place	e or City	of Crash NAP			With	in City N o		Т		eported ay/2017 57 PM		e Dispatched //May/2017 06:00 PM
Time on 17/Ma 06:1	Scene 1 y/2017 2 PM		eared Sce //2017 09: PM		pleted /es	Reas	son (if Inve	stigatio	on NOT	Complet	ed)							Not	ified By Law E	nforc	ement
ROADV	VAY INF	ORMA	ION																		
Crash O	ccured O	n Street,	Road, Hig	hway I-75 (S	R-93)					C	At Stre	et Addr	ess#		<u> </u>		ttitude 97018	544380	and)2 -81.7		jitude 7417393894
At Feet		Or Miles 2.	00	Direction Nor	th	OFr	om Interse	ection \	With Stre		l, Highwa R-951 (0		R BLV	D)					O Or Fr	om N	lilepost #
Road Sy	stem Ide		nterstate				Type Of S	Should	er	1 Pave	ed			Туре (Of Inter			at Inter	rsection		
CRASH	INFOR	MATION	l (Check	t if Pictu	res Ta	ken)	X]
light Cor	ndition 1 Dayli	ght	Wea	ther Conc 1 (lition Clear		Roady	-	urface Co 1 Dry	ondition	Scho	ol Bus F		No		Ν	lanner		llision Front to	Rear	
	14 1 On Roadway									Vithin Interc No				1	ent Relati Non.Juno		Junction				
Contribu	ntributing Circumstances: Road Contributing Circumstances: Road 1 None									Contri	buting (Circun	nstance	es: Roa	ad						
Contribu	ting Circu		s: Environ I None	ment			Contributi	ng Cir	cumstan	ices: Env	rironmen	t		Contri	buting (Circum	nstance	es: Env	rironment		
	ne Relate 1 No		sh In Wor	k Zone				Туре	Of Work	Zone				Workers I	n Work	Zone	La	w Enfo	prcement	In Wo	ork Zone
VEHICL	E (Che	ck if Co	mmercia	al)																	
Vehicle 2	Motor Ve 1 Vehi	ehicle Typ cle in Tra		Hit and R		Veh	License Nu CK	umber XE83		State F	۴ L	Reg. Exp 04/Fe	pires b/2018	Permane N		. VIN		KNDJ	N2A26E7	0394	17
Year 2014	Make KIA	Model SOL	Style	SUV	Color Bl	Lκ	Extent of Dis	f Dama sabling		Est. Dam 100	nage)00	Towed	l Due To Ye	o Damage s	Vehic		moved d C TC			otatio R	n otation
Insuranc	e Compa P		ENT GEN	ERAL AS	SURAN	CE C	ORPORA	ΓΙΟΝ		In	isurance	Policy	Number		FL2	90670	08				
			heck Box RIS ADDE	If Busines	ss)		Cu			(Number FION DR		,					d State BEACH			:	Zip Code 33445-0000
Trailer One:	License	Number	State	e Re	g. Expire	es	Permanen	t Reg.	VIN						Year		Make		Length		Axles
Trailer Two:	License	Number	State	e Re	g. Expire	es	Permanen	t Reg.	VIN						Year		Make		Length		Axles
Vehicle Traveling	g: Eas		On Stree	t, Road, H	lighway			1-7	75 (SR-9	93)							Speed 68		sted Spee 70		Total Lanes 6
CMV Co	onfiguratio	n				Carg	o Body Ty	ре					Ai	rea of Initial	Impact	t		Мо	st Damag	ged Ai	rea
Comm G	GVWR/GO	WR			Tra	ailer T	ype (trailer	r one)	Trai	iler Type	(trailer to	wo)	2 3	4 5 6 7 16 17 8	19. C	ndercarı Overturr		2 3 4	4 5 6 16 17		8. Undercarriage) . Overturn
Haz. Ma	t. Releas	e Haz	Mat. Placa	ard Nu	umber				Class				14 13	12 11 10 9	20. V 21. T	Vindshi railer	/	14 13 1	2 11 10). Windshield I. Trailer
Motor Ca	arrier Nar	ne						US	DOT N	umber			-								
		Moto	or Carrier	Address							City	and St	ate				Zi	p Code	e	Phone	e Number
Comm/N	Ion-Comr	nercial		Body Type ort) Utility			ehicle Def	ects (c 1 No	,		Vehicle	Defects	(two)		Emerg		Vehicle No	e Use			ction of MV al Function
Vehicle Maneuver Action Trafficway Roadwa 1 Straight Ahead 4 Two-Way, Divided, Positive Median Barrier										Roadw	ay Align 1 Strai		Мо	st Harmful I 1 Nor	Event n-Collis	sion			larmful E 1 Overtu		
Traffic C		vice For Controls		cle First (20	Collisio		n Non-Fixe			(2) Sequ Ran Off R			Third	(3) Sequer 1 Overtu			F	ourth	(4) Seque	ence o	of Events
				14 N		•	in Transp	oort													
VEHICL	E (Che	ck if Co	mmercia	· 🗆													I				
1		cle in Tra	ansport	Hit and R 1 N	lo	Veh		.7833			FL		n/2017	Permane N	o				U46F37H		
Year 2007	Make HYUN		TA Style	4D	Color W	ні	Extent of Dis	f Dama sabling			00		Ye	-	Vehic		moved d C TC			otatio R	n otation
Insuranc	e Compa	ny	G		URANC	E				In	surance	Policy	Number		49131	4052/	09170				

DocuSi	gn Envelope ID:	62322A	FF-CF3	7-48F9-	AC7	D-3997	28BC3I	-18	st. A	Agency R FH	eport Nur IPF170F		31		HSMV (Jrash R		Number 85417288		
	Vehicle Owner (C MARCUS DEMO			ss)		C	urrent A	ddress 81 NW		ber and S TER	treet)			FOR	City ar RT LAUE	d State				Zip Code 33311-0000
Trailer One:	License Number	State	e Re	g. Expire	es F	Permane	nt Reg.	VIN						Yea	r	Make		Length		Axles
Trailer Two:	License Number	State	e Re	g. Expire	es F	Permane	nt Reg.	VIN						Yea	r	Make		Length		Axles
Vehicle Traveling	Direction East	On Street	t, Road, ⊦	lighway			1-7	75 (SR-	93)							. Speed 103	d Po	sted Sper 70	ed	Total Lanes 6
CMV Co	nfiguration				Carg	o Body T	уре					A	Area of	Initial Imp	act		M	ost Dama	ged A	irea
Comm G	SVWR/GCWR			Tra	ailer Ty	ype (trail	er one)	Tra	iler Ty	pe (trailer	two)	2 3	4 5	7 8 1	3. Undercar 9. Overtur 0. Windsh	n G	1	4 5 6 16 17	8 1	8. Undercarriage 9. Overturn 0. Windshield
Haz. Ma	t. Release Haz	Mat. Placa	ard Nu	umber				Class				14 13	12 11	\neg	1. Trailer		14 13	12 11 10		1. Trailer
Motor Ca	arrier Name						US	DOT N	umber	r		-								
	Moto	or Carrier	Address							Ci	ty and St	tate				Zi	p Cod	le	Phon	e Number
Comm/N	Ion-Commercial	Vehicle B	ody Type assenge		V	ehicle D	efects (c 1 No			Vehicl	e Defects	s (two)		Em	ergency 1	Vehicle No	e Use			ction of MV al Function
	Maneuver Action raight Ahead	Trafficwa 4 Tw Positiv	y o-Way, D ve Media)ivided, n Barrie		Roadway	Grade I Level		Roa	dway Alig 1 Stra		M		mful Ever ision witl Obje	n Non-F	ixed		Harmful I Notor Vel		Detail n Transpor
Traffic C	ontrol Device For ⁻ 1 No Controls	This Vehic	le First (1) Seque	ence d	of Events		Second	(2) Se	equence o	f Events	Thir	d (3) Se	equence o		6 I	Fourth	n (4) Sequ	ience	of Events
		•			Objec															
	N RECORD		Vehi	alo #	Name								Date of E	Dirth	Sex		hono	Number		Re-Exam
1	1 Driv	er		1	Inallie		IARCUS	DEMC	OND C	OLEMAN			21/De		1 Ma	le		1-288-982	25	No
Address	81 NW 29TH	TER	1	City	FO	RT LAU	DERDA	LE		State		FL			Zip	Code		33311		
Driver Li	cense Number C455544944611	;	State	FL	E	Expires 21/D	ec/2020		L Type 5 E/	e /Operato	r		o Req sement		y Severi 2 Po	ity ssible		Ejectio 1		jected
2 Non	t System le Used -Motor cle Occupant	Air Bag D	6	notion	Helm	net Use			rotection ot App	on blicable	Seating	Location 1 Let		Sea	ting Loca 1 F	ation Ro ront	w	Seating	j Loca	tion Other
Drivers A	Actions at Time of perated MV in Ca	Crash (firs	t)		ər	Drivers	Actions	at Time	e of Cr	ash (secc	ond)			Driver Dis 1 N	tracted I		١	/ision Ob: 1 Visio		on Obscured
Drivers A	Actions at Time of	Crash (thir	rd)			Drivers	Actions	at Time	e of Cr	ash (fourt	h)			Drivers C	ondition			ash y Normal	I	
	ed Alcohol Use 1 No	3 Test 0	Given	1	Blood	È	2 C	Test Re omplet		0.060		1 No	g Use	3 Tes	t Given		1 Blo	bod		Test Result Positive
Source c	of Transport to Med 1 Not Transpo		ty	EMS Age	ency l	Name or	ID			EMS Ru	in Numbe	er		Med	lical Fac	ility Tra	nsport	ted To		
	N RECORD									1					_					
Person# 2	Description 3 Passer	nger	Vehi	cle # 1	Name	e	NAJE	E JANE	EE GA	DSON		D	Date of E 22/Ju		Sex 2 Fem			Severity 1 None		Ejection 1 Not Ejected
Address		3210 NW	16TH ST				City	/			FT LAU	DERDA	LE			S	tate	FL	Zip	Code 33311
2 Non	t System le Used -Motor cle Occupant	Air Bag D 3 Dep	eployed	ront	Helm	net Use		-	rotection ot App	on blicable	Seating	Locatio 3	on Seat	Sea	ting Loca	ation Ro 1	w	Seating	j Loca	tion Other
	of Transport to Med 1 Not Transpo		ty	EMS Age	ency l	Name or	ID			EMS Ru	in Numbe	er		Med	lical Fac	ility Tra	nsport	ted To		
PERSO	N RECORD													I						
Person# 3	Description 3 Passer	nger	Vehi	cle # 1	Name	e	JOSH	IUA DA	VID B	BLAIR		D	Date of E 15/Aug		Sex 1 Ma			Severity 1 None		Ejection 1 Not Ejected
Address		1147 NW	17TH ST		1		City	/		F	ORT LAU	UDERD	DALE			S	tate	FL	Zip	Code 33311
	t System der and Lap Belt Used	Air Bag D 4 De	eployed ployed-S	ide	Helm	net Use	I		rotection ot App	on blicable	Seating	Locatio 1	on Seat	Sea	ting Loca	ation Ro 2	w	Seating	j Loca	tion Other
Source c	of Transport to Med 1 Not Transpo		ty	EMS Age	ency l	Name or	ID	<u> </u>		EMS Ru	in Numbe	er		Med	lical Fac	ility Tra	nsport	ted To		
PERSO	N RECORD		I							_I				I						
Person# 4	Description 1 Driv	er	Vehi	cle # 2	Name	e	DI	EBBIE	ALLE	EN		D	Date of E 01/Jan		Sex 2 Fem		hone	Number		Re-Exam No


DocuSign	Envelope ID:	62322AFF	-ĈF3	7-48F9	ÁC7E	-39972	8BC3F	18	st. Agency F F		rt Number 170FF0334	431		HSMV Cr	ash Re		lumber 417288		
Address 4	422 NW 15TH	TER		City	FO	RT LAUD	ERDAL	.E	State		F	L		Zip C	ode		33311		
Driver License A45	e Number 0160675012	Sta	te	FL	E	xpires 01/Ja	n/2019	DL T	ype 5 E/Operato	or		l. Io Req orsemen	5 1	ıry Severity F atal (with i		ays)	Ejectio 1		jected
Restraint Sys 2 None Us Vehicle C		Air Bag Depl	6		Helme	et Use		Eye Prote 3 Not A	ection Applicable	Se	ating Locat 1 L		t Sea	ating Locati 1 Fro		V	Seating	Loca	tion Other
Drivers Action	ns at Time of 0 1 No Cont	Crash (first) t ributing Act	ion			Drivers A	Actions	at Time of	Crash (sec	cond)				stracted By Not Distrac			sion Obs 1 Visio		on Obscured
Drivers Actior	ns at Time of (Crash (third)				Drivers A	Actions	at Time of	Crash (fou	rth)			Drivers C	Condition at 1			sh Normal		
Suspected Al		Alcohol Test 1 Test No Given		Alcohol	Test Ty	/pe A	Icohol 1	Γest Resu	It BAC	Su	spected Dr 1 No	ug Use	Drug Te 1 Test	ested Not Given	Drug	Test 1	Гуре	Drug	Test Result
	ansport to Mec Not Transpo			EMS Ag	ency N	lame or I	D		EMS R	un N	umber		Me	dical Facilit	y Trans	sporte	d To	1	
PERSON R	ECORD																		
Person# Des 5	cription 3 Passer	nger	Veh	icle # 2	Name		RMA L	ASHEIA T	ALOMERN	A		Date of I 22/Se	Birth p/1976	Sex 2 Femal			verity pacitati		Ejection 1 Not Ejected
Address	40	001 WOODSI	DE D	R	r		City			со	RAL SPRI	NGS		1	Sta		L	Zip (Code 33065
Restraint Sys 2 None Us Vehicle C		Air Bag Depl 4 Deplo		Side	Helme	et Use		Eye Prote 3 Not A	ection Applicable	Se	ating Locat 3		t Sea	ating Locati 2	on Rov	v	Seating	Loca	tion Other
Source of Tra	ansport to Med 2 EMS	lame or I LIER CO		MS	EMS R	un N	umber		Me	dical Facilit Lf			d To AL HOS	PITAI	_				
PERSON R	ECORD								U										
Person# Des 6	cription 3 Passer	nger	Veh	icle # 2	Name		LICIA \	ONCIA F	ERGUSON	I		Date of I 04/Ap	Birth 0 r/1968	Sex 2 Femal			verity pacitati		Ejection 1 Not Ejected
Address	٤	8123 SW 24T	н ѕт				City				DAVIE				Sta		L	Zip (Code 33324
Restraint Sys 3 Shoulder a Us	and Lap Belt	Air Bag Depl	6		Helme	et Use	·	Eye Prote 3 Not A	ection Applicable	Se	ating Locat 3		t Sea	ating Locati 1	on Rov	V	Seating	Loca	tion Other
Source of Tra	ansport to Mec 2 EMS	lical Facility		EMS Ag		lame or II _IER CO		MS	EMS R	un N	umber		Me	dical Facilit Lf			d To AL HOS	PITAI	_
WITNESSE	S												1						
Name GINA E	ELGISA SULL	IVAN	Add	ress	4234		N DR		City		HOLL	YWOOI	D	\$	State	FL		Zip Co	ode 33019
WITNESSE	S													I _					
	L SEAN HAR	TNETT	Add	ress	8910	VERDUC	ссі ст		City		NA	PLES		ŝ	State	FL		Zip Co	ode 34114
WITNESSE	S								0.1									7. 0	
Name Address 9217 AE							T AVE		City		SU	RFSIDE			State	FL		Zip Co	33154
WITNESSE	S								0.1					ī.	24-1			7:	l -
Name JOSHUA M HAMILIN Address 409 MILLST									City		BRE	WSTER			State	MA		Zip Co	02631
WITNESSE	S																		
Name YA	ANET PEREZ	Z	Add	ress 8474	NW 10	3 STREE	ET APT	106G	City		HIALEA	I GARD	ENS	S	State	FL		Zip Co	ode 33016
WITNESSE	S		1.						1						_				
	RISTOPHER	ORLANDO	Add	ress	P	O BOX 2	251		City		MARC	O ISLAN	ND	S	State	FL		Zip Co	ode 34146
VIOLATION	-																		
Person# 1	Name M	ARCUS DEN	IOND	COLEM	AN			Statute Nu 16.1925(1		arge		CARE	LESS DF	RIVING			Cita	ition A7I	NUUCE

NARRATIVE

DocuSign Envelop	e ID: 62322AFF	-ĈF37-48F9-	AC7D-399728BC3F18	st. Agency Report Number FHPF170FF033431	HSMV Crash Report Number 85417288
ID Number Rank 2937 TROOPEI	Name R E.J. HENRIQU			 one Number Date Created ROL 239-344-1730 May 18, 2017	
inside lane directly a	head of V01. V01 grass median. V	failed to slow 02 overturned	for slower traffic. The from and came to rest in the m	nt left of V01 struck the rear right of V	on I-75 (SR-93) north of CR-951(Collier Blvd) in the /02. V02 began to rotate counterclockwise and left the otated clockwise and left the roadway to the right. V01
Name of deceased: Date of birth: 01/01/1 Date of death: 05/17/ Time of death: 6:27 F Pronounced by: Bat Traffic Homicide Invo Traffic Homicide Cas Photographs taken b	967 2017 Э.М. alion Chief Wayne estigator: Cpl. J. se No.: FHP717-64	A. Harris # 121 4-018 s # 1217	ollier County Fire / EMS. 7 Florida Highway Patrol		
	Name R E.J. HENRIQU ger information u	Troop / Post EZ F		one Number Date Created ROL 239-344-1730 Jun 09, 2017	
ID Number Rank 2937 TROOPEI	Name R E.J. HENRIQU	Troop / Post EZ F	Officer Agency Pho FLORIDA HIGHWAY PAT	 one Number Date Created ROL 239-344-1730 Jun 27, 2017	
FHP received the tox ng/mL, and 11 Nor 9	cicology report fo Carboxy Delta 9	r D01 from FD Tetrahydrocan	LE showing his blood alco nabinol 16+- 4 ng/mL. Thi	ohol content to be .058 g/100mL of blo is report was updated to reflect the to	ood. Also Delta 9 tetrahydrocannabinol (THC) 3.3+- 1.3 xicology report.
ID Number Rank 3389 CORPOR	Name AL J.A. HARRIS	Troop / Post F	Officer Agency Pho FLORIDA HIGHWAY PATR	one Number Date Created OL 239-344-1730 Apr 12, 2018	
On 4/12/2017, Corpo Homicide Investigati 1. Drug type(marijua 2. Updated contact i 3. The estimated spe 4. The estimated spe 5. Direction of travel 6. Rear passenger of	ral James A Harr ve Report. The u na/cannabis) for nformation for oc ed of Vehicle-1 (1 eed of Vehicle-2 (6 (east).	is of the Floric pdates were a Driver-1 (Marc cupants. 103 mph).	la Highway Patrol added a s follows:		was added to include discovery from the Traffic
	CED				

REPORTING OFFICER

	Rank and Name	Department	Type of Department
3389	CORPORAL J.A. HARRIS	FLORIDA HIGHWAY PATROL	FHP

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

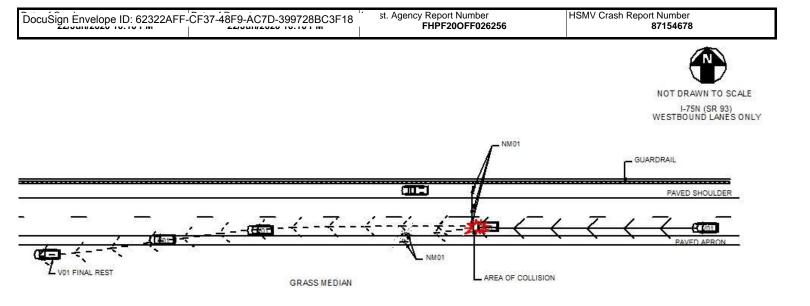
LONG FORM UPDATE X SHORT FORM

HIGHWAY SAFETY & MOTOR VEHICLES, TRAFFIC CRASH RECORDS NEIL KIRKMAN BUILDING, TALLAHASSEE, FL 32399-0537

			(E	Electr	onic Versio	ו)																
Date of Cras 22/Jun/20		10 PM	Time of 22/Jui		י 0 10:10 PM		e of Report 5/Jan/2021	10:51		vest	. Agency R FH		Numbe OFF02				HSMV (Crash R		Number 7154678		
CRASH ID	ENTI	FIERS																				
County Cod 64	le	City Cod	e)	Cour	nty of Crash C	OLL	IER		Place	e or	City of Cras UNINCO		ATED	1	With		ty Limits No	; Ti	22/Ju	eported un/2020 I4 PM	22	Dispatched 2/Jun/2020 0:17 PM
Time on Sce 22/Jun/20 10:25 Pl	020		ared Sce /2020 02 AM		Completed Yes	Rea	son (if Inves	stigatic	on NOT	Con	npleted)								Not	tified By Law E	nforce	ement
ROADWAY	Y INF	ORMAT	ION			1																
Crash Occu	ired Or	n Street, I	Road, Hi		y 75 (SR 93)						• At St	reet A	ddress	\$#			At La 26.153	attitude 3259999)9999 9 !	and 99 -81.	Long 57072	itude 99999999997
At Feet		Or Miles 7.	00	Direc	ction East	••Fi	rom Interse	ction V	Vith Stre	eet, l	Road, High CR 951	,	LIER E	3LVD))					O Or F	rom M	ilepost #
Road Syster	m Iden		nterstate			1	Type Of S	houlde	er	1	Paved				Туре	Of Int	tersectio		at Inte	rsection		
CRASH IN	FOR				Pictures Ta	ken)	X				avea							111010		Section		
light Conditi	on	ighted	•		Condition 2 Cloudy	- ,		-	rface Co 1 Dry	ondi	tion Sch	iool Bi	us Rela		No		ſ	Manner 77		Ilision r, Explair	n in Na	arrative
First Harmfu	ul Ever	it Type		Fir	st Harmful Ev	/ent 10	I		First Ha		ul Event Lo 1 On Road			Wi	ithin Interc No		je Fir	st Harm		ent Relat		Junction
Contributing	g Circu		s: Road None				Contributir	ng Circ	cumstan	ices:	: Road				Contri	ibutin	g Circur	nstance	s: Roa	ad		
Contributing	g Circu		s: Enviro None	nmen	t		Contributir	ng Circ	cumstan	ces	: Environme	ent			Contri	ibutin	g Circur	nstance	s: Env	/ironment		
Work Zone			sh In Wo	rk Zor	ne			Туре С	Of Work	Zor	ne				Workers I	In Wo	ork Zone	La	w Enfo	orcement	In Wo	rk Zone
VEHICLE ((Chec	k if Cor	nmerci	al)																		
Vehicle Mo 1 1		hicle Typ :le in Tra		Hit a	nd Run 1 No	Veh	License Nu EVU			S	tate FL		Expire /Jun/2		Permane N	ent Ro I o	eg. VIN		5TDK	Z3DC3L8	605972	27
Year Ma 2020	ake TOYT	Model SIENI	NA Style	VN	Color Bl	ĸ	Extent of Fun	Dama ctiona		Est.	Damage 7000	To	wed Du	ue To Yes	Damage	Ve	hicle Re BALD	moved EAGLE			otatior Ro	n otation
Insurance C	Compar	у	ESUR			CEC	0.				Insuranc	ce Pol	icy Nu	nber		PA	FL-8358	588				
Name of Ve		wner (Cl OLDING		k lf Bu	isiness)	(Cur			•	mber and S	treet)						d State NDO FL				Zip Code 32827-0000
Trailer Lic One:	ense N	lumber	Sta	te	Reg. Expire	es	Permanent	Reg.	VIN							Year	r	Make		Length	1	Axles
	ense N	Number	Sta	te	Reg. Expire	es	Permanent	Reg.	VIN							Year	r	Make		Length	,	Axles
Vehicle Traveling:	Direc Nor	th	On Stree	et, Ro	ad, Highway			I-7	75 (SR 9	93)						1	At Est	. Speed 75	Pos	sted Spee 70	ed -	Total Lanes 4
CMV Config	guration	ו				Car	go Body Typ	be						Are	ea of Initia	l Imp	act		Мо	ost Damag	ged Ar	rea
Comm GVW						ailer 1	Гуре (trailer			ler T	Type (trailer	two)			4 5 6 7 16 17 8	3 19	3. Undercar 9. Overtur 0. Windsh	n (1		4 5 6 16 17	, 8 19	. Undercarriage 9. Overturn 9. Windshield
Haz. Mat. R	elease	Hazl	Mat. Plac	card	Number				Class				1.	4 13 1	12 11 10	ə 2'	1. Trailer	1	4 13 1	12 11 10	9 21	. Trailer
Motor Carrie	er Nam	IE						US	DOT Nu	umb	er											
		Moto	or Carrier	Addr	ess						Ci	ty and	I State					Zij	p Code	e	Phone	Number
Comm/Non-	-Comr	nercial	Vehicle 2		Type enger Van	`	Vehicle Defe	ects (o 1 No	,		Vehicl	e Defe	ects (tv 1 No	'		Em	ergency 1	Vehicle No	Use			tion of MV al Function
Vehicle Maneuver Action 1 Straight Ahead Positive Median Barrier							Roadway G 1 L	rade _evel		Rc	badway Alig 1 Stra		t		t Harmful Collision		Non-Fi		Most I	Harmful E 10 Pe	vent E edestr	
Traffic Contr	h Non-Fixe		Second	(2) 5	Sequence o	f Ever	nts	Third ((3) Seque	nce c	of Events	s F	ourth	(4) Seque	ence c	of Events						
						Obje Pede	ct strian															
PERSON F	RECO	RD																				
Person# De 1	escriptio	on 1 Drive	er		Vehicle # 1	Nam		нолл	ER YAIF	r sa	ANCHEZ				te of Birth 1/Oct/198		Sex 1 Ma			Number -294-545		Re-Exam No
Address	TAMP	A			State			FL			Zip	Code		33619								
Driver Licen \$5		mber 803711		State	e FL		Expires 11/Oct	t/2025		∟ ⊤y 5	pe E/Operato			No F		Injur	y Severi 1 N	ty one		Ejection 1		jected

3 No Req Endorsement

DocuSign Envelo	pe ID: 62322AF	F-CF3	37-48F9-	AC7D	-399728BC3	F18 ^{st. /}		eport Number IPF20OFF026	256		HSMV Cra	ash Report 8	Number 7154678	ı
Restraint System 3 Shoulder and Lap Used	Air Bag De p Belt 2 Not	ployed Deplo		Helme	t Use	Eye Protection 3 Not App		Seating Loca 1 L	ation Sea _eft	it Seat	ting Locatio 1 Fro		Seating	g Location Other
Drivers Actions at Ti 1 N	me of Crash (first) o Contributing A				Drivers Actions	at Time of Cr	ash (seco	ond)		Driver Dis 1 No	tracted By ot Distract			struction n Not Obscured
Drivers Actions at Ti	me of Crash (thirc)			Drivers Actions	at Time of Cr	ash (four	th)		Drivers Co		Time of Cra Apparently		I
Suspected Alcohol L 1 No	Jse Alcohol Te 2 Test Re		Alcohol -	Test Ty	pe Alcohol	Test Result	BAC	Suspected D 1 No			sted Refused	Drug Test	Туре	Drug Test Result
Source of Transport 1 Not Tr	to Medical Facility ransported	1	EMS Ag	ency Na	ame or ID		EMS Ru	In Number		Med	ical Facility	/ Transport	əd To	<u>.</u>
PERSON RECOR														
Person# Description 5 3 I	Passenger	Veh	icle # 1	Name	NELSON \	WILLIAM SAN	CHEZ RI	ΞY	Date of 09/De	Birth ec/1974	Sex 1 Male	Injury S 1	everity None	Ejection 1 Not Ejected
Address 85	546 EDGEWATER		E BLVD		Cit	у		ТАМРА				State	FL	Zip Code 33615
Restraint System 3 Shoulder and Laj Used	Air Bag De p Belt 2 Not	ployed Deplo		Helme	t Use	Eye Protection 3 Not App		Seating Loca	ation Sea 3	it Seat	ting Locatio 2	on Row	Seating	g Location Other
Source of Transport	to Medical Facility	/	EMS Ag	ency Na	ame or ID		EMS Ru	In Number		Med	ical Facility	/ Transport	ed To	
PERSON RECOR	•													
Person# Description 3 3 I	Passenger	Veł	icle # 1	Name	MARIA TEI	RESA REY DE	E SANCH	EZ	Date of 02/Au	Birth Jg/1956	Sex 2 Female	Injury S P 1	everity None	Ejection 1 Not Ejected
Address	8546 EDGEWAT	ER PL	BLVD		Cit	у		ТАМРА				State	FL	Zip Code 33615
Restraint System 3 Shoulder and Laj Used	Air Bag De Belt 2 Not	ployed Deplo		Helme	t Use	Eye Protection 3 Not App		Seating Loca	ation Sea 1	it Seat	ting Locatio 3	on Row	Seating	g Location Other
Source of Transport 1 Not Transport	to Medical Facility ransported	1	EMS Ag	ency Na	ame or ID		EMS Ru	un Number		Med	ical Facility	/ Transport	ed To	
PERSON RECOR		1		1					1		-	1		
Person# Description 2 3 I	Passenger	Ver	icle # 1	Name	HERNAN	DO SANCHE	Z ZARO	S	Date of 06/M	Birth ar/1941	Sex 1 Male	Injury S 1	everity None	Ejection 1 Not Ejected
Address	8546 EDGEWAT	ER PL	BLVD		Cit	у		ТАМРА				State	FL	Zip Code 33615
Restraint System 3 Shoulder and Laj Used	Air Bag De p Belt 2 Not	ployed Deplo		Helme	t Use	Eye Protection 3 Not App		Seating Loca	ation Sea 3	it Seat	ting Locatio 1	on Row	Seating	g Location Other
Source of Transport 1 Not Tr	to Medical Facility ransported	/	EMS Ag	ency Na	ame or ID	_	EMS Ru	In Number		Med	ical Facility	/ Transport	ed To	
PERSON RECOR														
Person# Description 4 3 I	Passenger	Veh	icle # 1	Name	ALEX	FABIAN MUN	IETON		Date of 19/Au	Birth J g/1976	Sex 1 Male	Injury S 1	everity None	Ejection 1 Not Ejected
Address	9052 LAKE PLAG		IE 42A		Cit	у		ТАМРА		L. L		State	FL	Zip Code 33634
Restraint System 3 Shoulder and Laj Used	Air Bag De	ployed Deplo		Helme	t Use	Eye Protection	on	Seating Loca	ation Sea 1	it Seat	ting Location 2	on Row	Seating	g Location Other
Source of Transport	to Medical Facility	/	EMS Ag	ency Na	ame or ID		EMS Ru	In Number		Med	ical Facility	/ Transport	ed To	
PERSON RECOR	D													
Person# Description 7 2 No	n-Motorist	Name		TIFFAN	IY MARIE KEI	MPER		Date of Birth 22/Nov/19		ex 2 Female		Severity tal (within days)		none Number
Address 258 E GRAV	VES AVE APT 4		City	C	RANGE CITY		State	F	۶L		Zip Co	ode	32763	
Non-Motorist Descrip 5 Occupant of Mot		sport (pai		Non-Motorist A	ction Prior to 0 1 Crossin		vay		Non-Moto		on at Time o el Lane - O		ation	
	art/Dash	Non-Mot	torist Ac	ctions/Circums				None			-Motorist S	afety Eq	uipment (Two)	
2 Yes	spected Alcohol Use Alcohol Tested				2 0	Test Result completed	BAC 0.110	Suspected D 2 Ye		3 Test	Given	Drug Test 1 Blo	od	Drug Test Result 1 Positive
Source of Transport 1 Not Tr	to Medical Facility ransported	/	EMS Ag	ency Na	ame or ID		EMS Ru	in Number		Med	ical Facility	/ Transport	∋d To	


DocuSign Envelope ID: 62322AF	F-ĈF37-48F9-AC7D-399728BC3F18	st. Agency Report Number FHPF20OFF026256	HSMV Crash Report Number 87154678	
Name LEONARD SCOT ROBERTS	Address 96223 PARLIMENT DRIVE	City FERNANDINA BEACH	State FL	Zip Code 32034
NARRATIVE		I		
NARRATIVE D Number Rank Name	Troop / Post Officer Agency Phon N F FLORIDA HIGHWAY PATROL	 e Number Date Created 239-344-1730 Jun 24, 2020		

Vehicle 1 (V01) was traveling west on the inside lane I-75N (SR 93). Non-motorist 01 (NM01) exited a stopped vehicle on the north paved shoulder of I-75N. NM01 dashed south across the outside lane to the inside lane, into the path of V01. The front V01 collided with NM01 on the inside lane of I-75N. V01 came to a controlled stop on the grass median of I-75N, facing west. NM01 came to final rest on the inside lane. Then was moved to the inside paved apron on I-75N to render aide, post collision.

Deceased: Tiffany Marie Kemper D.O.B. 11.22.1986 Date of Death: 6.22.2020 Pronounced By: Battalion Chief Matthew Trump THI Case#: FHP720-64-023 Traffic Homicide Investigator and Photos By: Cpl. J. Close

REPORTING OFFICER

ID/Badge #	Rank and Name	Department	Type of Department
2569	CPL J.D. CLOSE	FLORIDA HIGHWAY PATROL	ÊHP

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

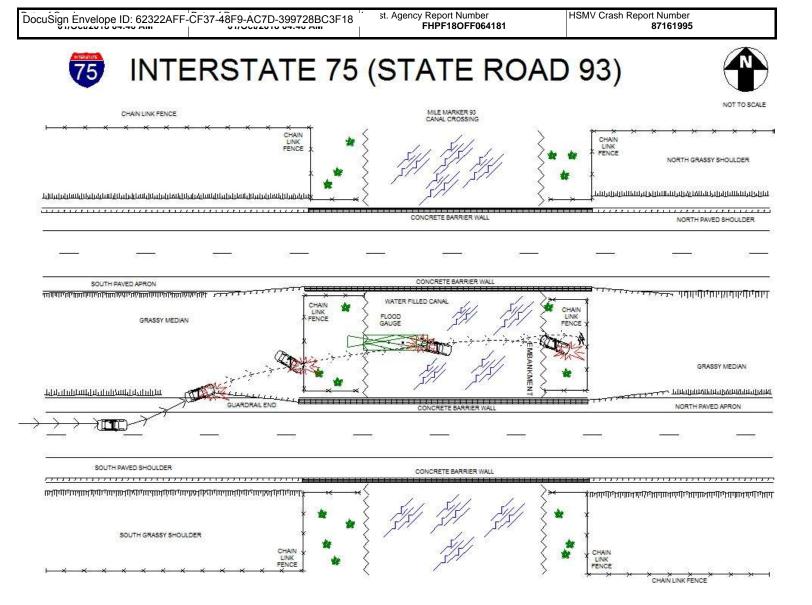
HIGHWAY SAFETY & MOTOR VEHICLES, TRAFFIC CRASH RECORDS NEIL KIRKMAN BUILDING, TALLAHASSEE, FL 32399-0537

			(Elec	tronic Versio	n)													
Date of 01/Oc	Crash t /2018 0 4	1:46 AM	Time of Cra 01/Oct/20	sh 18 04:46 AM		of Report Aug/2019 09:24		est. Ager	ncy Repo FHPI	ort Num F180FF			ŀ	ISMV Cra	ash Rep	ort Number 87161995	;	
CRASH	I IDENT	IFIERS																
County	Code 64	City Cod	e Co 0	unty of Crash (COLLIE	R	Place	or City o UNI	of Crash INCORP	ORATE	ĒD	With		y Limits No	0	e Reported 1/Oct/2018 11:31 AM	01/	Dispatched Oct/2018 I:31 AM
	Scene ct/2018 1 AM		eared Scene /2018 04:00 PM	Completed Yes	Reaso	on (if Investigatio	on NOT C	omplete	:d)						1	Notified By Law	Enforce	ment
ROAD	NAY INI	ORMAT	TION															
Crash C	ccured C		Road, Highw INTERSTAT	ay E 75 (STATE	ROAD	93)		0	At Stree	et Addre	ess#		e	At Latt 26.1526		and 67601 -81		tude 302186295
At Feet		Or Miles 8.	00	ection East	⊙ Fro	m Intersection V			Highwa ′ ROAD		OLLIER	BLVD)				O Or	From Mi	lepost #
Road Sy	ystem Ide		teratete		-	Type Of Should		1 Paveo	J			Туре С	Of Inte	ersection	Net et	Intersectior		
CRASE			terstate	Pictures Ta	ken)	X		TPavec	1					1	NOT at	Intersection	1	
light Co			•	r Condition 1 Clear	ikenj	Roadway Su	Irface Cor 1 Dry	ndition	Schoo	l Bus Re	elated 1 I	No		Ma		f Collision hther, Expla	in in Na	rrative
	rmful Eve	-	F	First Harmful E	vent 28		First Harr		ent Locat /ledian	ion		thin Intercl No		e First		I Event Rela 1 Non.Ju	ation to .	
			I None			Contributing Cire								Circums				
Contribu	uting Circ		s: Environme I None	ent	C	Contributing Cire	cumstance	es: Envir	ronment			Contril	outing) Circums	tances:	Environmer	nt	
Work Zo	one Relat 1 No	ed Cra	sh In Work Z	one		Туре	Of Work Z	lone				Workers Ir	n Wor	k Zone	Law	Enforcemen	t In Wor	k Zone
VEHICI	LE (Che	ck if Co	mmercial)															
Vehicle 1		ehicle Typ icle in Tra		and Run 1 No	Veh L	icense Number HFRP16		State FL		eg. Expi 17/Dec		Permane No		g. VIN	51	NPE34AB0F	H04675	2
Year 2015	Make HYUN	Model	TA Style	Color	LK	Extent of Dama Disabling		st. Dama 2200	0	Towed	Due To Yes	Damage	Veh	nicle Rem			Rotation	tation
	ce Compa	any							surance	Policy N			E1	8815359				
Name o			heck Box If E AINE MIXON				ddress (N CYPRES			et)				City and				Zip Code 34103
Trailer One:	License	Number	State	Reg. Expir	es P	ermanent Reg.	VIN					,	Year	ſ	Make	Length	A	xles
Trailer Two:	License	Number	State	Reg. Expir	es P	ermanent Reg.	VIN						Year	٩	Make	Length	A	xles
Vehicle Travelin	g: Ea		On Street, F	Road, Highway		INTERSTATE	75 (STA1		D 93)					At Est. 8 8	•	Posted Spe 70	ed T	otal Lanes 4
CMV Co	onfiguratio	on			Cargo	Body Type					Are	a of Initial	Impa	ct		Most Dama	aged Are	ea
Comm (GVWR/G	CWR		Tr	ailer Ty	pe (trailer one)	Traile	r Type (1	trailer tw	o)	2 3 2 1 (15 ((-	5 6 7 16 17 8	19.	Undercarria Overturn	้ สไ	3 4 5 6 15 ((16 17	8 19.	Undercarriage Overturn
Haz. Ma	at. Releas	e Haz	Mat. Placard	Number			Class				14 13 1	2 11 10 9		Windshiel Trailer		13 12 11 10	\sim	Windshield Trailer
Motor C	arrier Na	me				US	DOT Nun	nber										
		Moto	or Carrier Ad	dress					City	and Stat	te				Zip (Code	Phone	Number
Comm/N	Non-Com	mercial	Vehicle Bod 1 Pas	y Type senger Car	Ve	ehicle Defects (c 1 No	- /	V	/ehicle [Defects ((two)		Eme	rgency V 1 N				ion of MV I Function
Vehicle Maneuver Action 1 Straight Ahead Positive Median Barrier						badway Grade 1 Level			iy Alignm 1 Straig			t Harmful E Collision v				ost Harmful 26 Er	Event D nbankm	
Traffic C		evice For	This Vehicle	First (1) Sequ 3 Collision	ience of with F	ixed Object	Second (2) Seque 37 Fe		vents	39	3) Sequer Other Fixe building, t	ed Ob	ject (wa		urth (4) Seq 26 En	uence of nbankm	
PERSC	N REC	ORD		28 G	uardra	II ENd								, ,				
	# Descript		er	Vehicle # 1	Name		Y JERMA		XON			e of Birth 7/Dec/199		Sex 1 Male		one Number 954-260-72		Re-Exam No
Address		PRESSW	OODS DR	City	1	NAPLES		Sta	ate		FL		I	Zip C	ode	34103		

Docuoi		D: 62322AFF-CF	01-401 9-40	2010 07.70		,	F	IPF18OFI	-064181				87161995	
	System e Used -Motor cle Occupant	Air Bag Deploye 3 Deployed-	-	elmet Use		/e Protect 3 Not App		Seating	Location Seat 1 Left		Seating Locati 1 Fro		Seating	g Location Other
	ctions at Time of cerated MV in 0	of Crash (first) Careless or Neglige	ent Manner	Drivers	Actions at 17	Time of C Exceeded				Drive	Distracted By 88 Unknow		Vision Ob 1 Visio	struction n Not Obscured
Drivers A	ctions at Time o 26 Ra	of Crash (third) an off Roadway		Drivers	Actions at	Time of C	rash (four	th)		Drive	s Condition at		Crash n known	
	d Alcohol Use Unknown	Alcohol Tested 3 Test Given	Alcohol Tes 1 Blo		Alcohol Tes 2 Com		BAC 0.000		ed Drug Use I nknown		Tested Test Given		est Type Blood	Drug Test Resu 2 Negative
77	f Transport to N Other, Explain	in Narrative	°c	cy Name or OLLIER CO		S		un Numbe C201810	r 010000055		Medical Facilit COLL		orted To MEDICAL	EXAMINER
		PERTY DAMAGE rty Damage - Other GUARDRAIL I	Than Vehicle	e Est. Amo 5000	unt Busine Yes		er's Name . ORIDA D	от	Address 4800	DAVIS	(S BLVD	City & St N	ate APLES FL	Zip Code 34104
ION VE	HICLE PROP	PERTY DAMAGE												
/ehicle#	Person# Prope	rty Damage - Other FLOOD GAU	Than Vehicle GE	e Est. Amor 5000	unt Busine Yes		er's Name ORIDA D	от	Address 4800	DAVIS	S BLVD	City & St N	ate APLES FL	Zip Code 34104
NON VE	HICLE PROF	PERTY DAMAGE												
Vehicle#	Person# Prope 30FT	rty Damage - Other CHAIN LINK FENO	Than Vehicle CE W/ POST	Est. Amor S 2000	unt Busine Yes		er's Name ORIDA D	от	Address 4800	DAVIS	G BLVD	City & St N	ate APLES FL	Zip Code 34104

DocuSign Envelope ID: 623224	AFF-CF37-48F9-AC7D-399728BC3F18	st. Agency Repo FHPF	ort Number 5180FF064181	HSMV Crash Report Number 87161995
ID Number Rank Name 1910 TROOPER J.A. BENO	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL	e Number Date	Created	
V01 traveled east on Interstate 7 For unknown reasons; V01's drive traveled to the left in a northeaster where V01's right front struck a gu clockwise as V01 continued to trai median. V01's front left struck and of the mile marker 93 canal crossi flood gauge sensor assembly with struck the east embankment wher	75 (State Road 93) on the eastbound inside lair r failed to maintain control of V01. V01 rly direction and entered the grassy median uardrail end. The impact caused V01 to rotate vel in a northeasterly direction on the grassy I breached a chain link fence on the west side ng. V01 vaulted over the canal striking a 1 V01's undercarriage. V01's front subsequent e V01's driver was ejected into the fence on the 01 came to final rest faced southeast on the		00101,2010	
Name of Decedent (V01's occupar Date of Birth: 12/17/1996 Date of Death: 10/01/2018 Time of Death: 11:51 AM Pronounced By (At scene): Lt. Tho	nt 1): Aubrey Jermaine Mixon omas Szempruch of Great Naples Fire Rescue	e (Ladder 72).		
FHP Traffic Homicide Case Numbe	er: FHP718-64-026 igator: Corporal Michael Reed I.D. 3902 / 1412	. ,		
Source of Transportation to Medic	al Facility: Aubrey Jermaine Mixon (V01's O-1	l) was removed fr	rom the scene by SW Profes	ssional Services.
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect that as of	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL 10/29/2018 V01 driver's B.A.C. results are stil		Created Oct 29, 2018	
ID Number Rank Name 1910 TROOPER J.A. BENO	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL	e Number Date 239-344-1730	Created Nov 26, 2018	
This update is to reflect that as of	11/26/2018 V01 driver's B.A.C. results are stil	l pending.		
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect tha	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL t as of 12/22/2018 V02 driver's B.A.C. results a		Created Dec 22, 2018	
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect that as of	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL f 01/19/2019 V01 driver's B.A.C. results are sti		Created Jan 19, 2019	
ID Number Rank Name 1910 TROOPER J.A. BENO This undate is to reflect that as of	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL f 02/08/2019 V01 driver's B.A.C. results are sti		Created Feb 08, 2019	
ID Number Rank Name		 e Number Date	Created	
1910 TROOPER J.A. BENO	IT F FLORIDA HIGHWAY PATROL 03/05/2019 V01 driver's B.A.C. results are stil	239-344-1730	Mar 05, 2019	
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect that as of				
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect that as of	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL 05/05/2019 V01 driver's B.A.C. results are stil			
ID Number Rank Name 1910 TROOPER J.A. BENO	Troop / Post Officer Agency Phon	e Number Date	Created Jun 02, 2019	
This update is to reflect that a	s of 06/02/2019 V01 driver's B.A.C. results are	still pending.		
ID Number Rank Name 1910 TROOPER J.A. BENO This update is to reflect that			Created Jul 03, 2019	
ID Number Rank Name 1910 TROOPER J.A. BENO	Troop / Post Officer Agency Phon IT F FLORIDA HIGHWAY PATROL	e Number Date 239-344-1730	Created Jul 24, 2019	
	as of 07/24/2019 V01 driver's B.A.C. results we			nas been completed.
ID Number Rank Name 3902 CORPORAL M. REED	Troop / Post Officer Agency Phon F FLORIDA HIGHWAY PATROL	 e Number Date 239-344-1730	Created Jul 26, 2019	
Update 08-07-2019 to include the T				
ASSIGNMENT	2019 of 04146 p.m. on 175 (04-4- D) (0)		ight miles east of the interve	notion with County David 054 (Callian
Boulevard) in the unincorporated of the Florida Highway Patrol (FHF was assigned to conduct the Traff	P) was dispatched to this crash on October 1,	ngle vehicle crash 2018, at 11:31 a.r	h involving one sedan and c m., and arrived on scene at	ection with County Road 951 (Collier one fatality. Trooper Jeffrey Benoit, ID #: 587, 11:41 p.m., to conduct a crash investigation. I

CRASH ANALYSIS SUMMARY


I-75, in the area of the crash, was a four lane divided roadway. The roadway was oriented in a predominantly east and west direction. The roadway had no discernable

DocuŚign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18	st. Agency Report Number FHPF180FF064181	HSMV Crash Report Number 87161995
grade or superelevation. The lanes were bordered to the outside by a solid ' The lanes were bordered to the inside by a solid yellow painted line. The sp seven miles east of the area of collision. The coefficient of friction for the I- obtained by utilizing drag sled #046 on the level portion of the travel lanes a According to local weather reports, the weather conditions for this crash we was at 7:19 a.m. The area of the crash was a rural highway. Driver 01 (D-1) 34103. D-1 was identified by his photo FCIC/NCIC, from a valid Forida Drive physical evidence consisting of injuries and final rest location, indicating th blood sample obtained from D-1 indicated no alcohol or drug content. D-1 or Tag #: HFRP16 east on 1-75. D-1 failed to maintain his lane and traveled ontc continued east on the grass median where the front of V-1 collided with a ch management pole before landing front first onto a rock bank. D-1 was eject south. The initial area of collision took place within the grass median with th the rocks on the east bank of the canal. Fresh furrow marks began west of t east into the collision area with the chain-link fence and then ended at the tc photographed the scene and took scene evidence measurements utilizing a median of 1-75, west of the canal. V-1 traveled onto the grass median for 155 before colliding with the chain link fence on the west canal embankment. V from the ground, then collided with a handrail and water management pole. ejected from V-1 and traveled 12'3" to final rest on the top of the embankment attached Reconstruction Diagram. Collier County Emergency Medical Serv. Szempruch of Ladder 72 of pronounced D-1 deceased on scene at 11:51 a.m autopsy was conducted by Doctor Manfred C. Borges, Jr., Deputy Chief Med of V-1's death was the result of blunt force injuries as a result of this crash. V-1 at the location of separation from the ground before it traveled over the median without any input from D-1 as evidenced by the lack of braking and observed on V-1 which indicated a collision with an	eed limit signs in this area were posted at 70 m 75 grass median was .66 and the eastbound lan nd median. The roadway and traffic control dev ere that it was clear around the time of the crash was Aubrey Jermaine Mixon (DOB: 12/17/1996)) er License, with no restrictions or endorsements the was the only occupant in the vehicle at the operated V-1, a black 2015 Hyundai Sonata (VIN o the grass median where the front right of V-1 o ian link fence, separated from the ground, and ted from V-1 and came to final rest facing down he guardrail west of the canal, the fence-line we hearea of collision and continued east into the op of the embankment. The front, side, and kne department issued Leica Total Station Serial Nu 35' before colliding with the guardrail. V-1 trav '1 continued past the chain link fence for 44'11' V-1 was airborne for 81'5' before colliding with nt. I marked and measured the physical evidenci ices (EMS) Greater Naples Fire Rescue respond . The autopsy of D-1 of V-1 was conducted on lical Examiner of the District 20 Medical Examin canal and collided with the rock embankment to steering action as the front and rear wheels trao de Florida State Statue 316.1925(1), careless dri	lies per hour located at two miles west and es asphalt surface was measured at 0.83 as rices did not contribute to this crash. . The crash occurred before sunrise which of 1283 Cypress Woods Drive, Naples, Florida, s. D-1 was established as the driver of V-1 by e time of the crash. A toxicology analysis of a #: SNPE34AB0FH046752) displaying Florida collided with a guardrail abutment. V-1 then collided with a handrail and water on the grass median with the feet oriented st of the canal, the handrail over the canal, and collision area with the guardrail, continued e airbags were deployed on V-1. I umber 876910 which I positioned on the grass led on the grass median for another 1717" of of the west canal embankment. D-1 was ce on scene from which I was able to create the ed to the scene and Lieutenant Thomas Tuesday, October 2nd, 2018 at 08:30 a.m. The er's Office. Doctor Borges concluded that D-1 ormulas, I was able to calculate the speed of be 76 miles per hour. V-1 entered into the ked in line. No paint transfers or damage was ving, 316.187(2)(0.), excessive speed, and

CASE CLOSING STATUS Closed: Exception - The investigation is complete and no charges will be filed because the at-fault person expired as a result of this crash.

REPORTING OFFICER

		ID/Badge # 3902	Rank and Name CORPORAL M. REED	Department FLORIDA HIGHWAY PATROL	Type of Department FHP
--	--	---------------------------	-----------------------------------	--------------------------------------	---------------------------

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

HIGHWAY SAFETY & MOTOR VEHICLES, TRAFFIC CRASH RECORDS NEIL KIRKMAN BUILDING, TALLAHASSEE, FL 32399-0537

		(El	ectro	nic Versior)													
Date of Crash 12/Aug/2021 ()2:44 PM	Time of C 12/Aug/		02:44 PM		of Report 1ar/2022 01:58		vest. Ager			nber F039340		ŀ	HSMV	Crash F		Number 8551203	
CRASH IDEN	FIFIERS																	
County Code 64	City Cod	le (0	Count	y of Crash C	OLLIE	R	Place	e or City o UNI		PORAT	ED	V	Vithin Cit	y Limit No	s T		eported ug/2021 44 PM	Time Dispatched 12/Aug/2021 02:44 PM
Time on Scene 12/Aug/2021 02:45 PM		eared Scer g/2021 07: PM		completed Yes	Reaso	on (if Investigatio	on NOT	Complete	d)							No	tified By Law Ei	nforcement
ROADWAY IN	FORMAT	ΓΙΟΝ																
Crash Occured	On Street,	Road, Higl		5 / SR-93				0	At Stre	et Addr	ess#		(-	attitude 541146	15071		Longitude 19554065415201
At Feet	Or Miles 4.	.00	Direct	ion East	O From	m Intersection V	Vith Stre		•		BOULEV	ARD					O Or Fr	om Milepost #
Road System Id		nterstate			٦	Type Of Shoulde	ər	1 Paved				Тур	be Of Inte	ersecti		at Into	rsection	
CRASH INFO			if Pi	ctures Tal	(en)	X		TFaveu							TNOL		Section	
light Condition 1 Day				Condition 1 Clear	,	Roadway Su	rface Co 1 Dry	ondition	Scho	ol Bus f	Related 1 I	No			Manner	Of Co	ollision 3 Angl	e
First Harmful Ev	ent Type		First	t Harmful Ev	ent 14		First Ha	rmful Eve 1 On F			Wi		erchange No	e F	irst Harr		vent Relati Non.Junc	on to Junction
Contributing Circ		s: Road 1 None	_1		C	Contributing Circ	cumstan	ces: Road	1			Co	ntributing	g Circu	mstance	es: Ro	ad	
Contributing Circ	cumstance		ment		C	Contributing Circ	cumstan	ces: Envir	onmer	it		Co	ntributing	g Circu	mstance	es: Env	vironment	
Work Zone Rela 1 No	ted Cra	sh In Work	Zone	9		Туре (Of Work	Zone				Worke	rs In Wo	rk Zon	e La	w Enf	orcement l	n Work Zone
VEHICLE (Che	eck if Co	mmercia	I)			l.					I							
Vehicle Motor V 3 1 Veh	/ehicle Typ nicle in Tra			d Run 1 No	Veh Li	cense Number Z436NC		State FL		Reg. Ex 03/Ju	pires 1 1/2020	Perma	anent Re No	g. VI	N	JA4A	P4AU4BZ	024349
Year Make 2011 MITS	Model S OUTLAI		UT	Color BL		Extent of Dama Disabling		Est. Dama 200		Towed	l Due To Yes		je Veł		emoved			otation Rotation
Insurance Comp		FINITY AU		NSURANCE	СОМ	PANY		Ins	urance	Policy	Number		10990	08869	949001			
Name of Vehicle HENF		heck Box I		iness)		Current A		(Number a		eet)			С		nd State			Zip Code 33990
Trailer License One:	e Number	State)	Reg. Expire	s P	ermanent Reg.	VIN						Year		Make		Length	Axles
Trailer License Two:	e Number	State)	Reg. Expire	s P	ermanent Reg.	VIN						Year		Make		Length	Axles
	rection lest	On Street	, Roa	d, Highway	1	I-7	75 / SR-9	93						At Es	t. Speed 50	d Po	sted Spee 70	d Total Lanes 6
CMV Configurat	ion				Cargo	Body Type					Are	ea of In	itial Impa	act		Mo	ost Damag	ed Area
Comm GVWR/G	CWR			Tra	iler Ty	be (trailer one)	Trai	ler Type (t	trailer t	wo)	2 3	4 5 6 16 17	8 19.	Underca Overtu	m		4 5 6 7 16 17 8	18. Undercarriage 19. Overturn
Haz. Mat. Relea	se Haz	Mat. Placa	rd	Number			Class				14 13 1	2 11 10		. Windsl . Trailer		14 13		20. Windshield 21. Trailer
Motor Carrier Na	ame					US	DOT Nu	umber			-							
	Moto	or Carrier A	Addres	SS		I			City	and St	ate				Zi	p Cod	le f	Phone Number
Comm/Non-Com	nmercial	Vehicle B 16 (Spo		ype tility Vehicl		hicle Defects (o 1 No	,	V	/ehicle	Defects	(two)		Eme	· ·	y Vehicle 1 No	e Use		Function of MV
Vehicle Maneuv 1 Straight A		Trafficway 4 Tw Positiv	o-Way	y, Divided, dian Barrie		adway Grade 1 Level		Roadwa	y Align 1 Strai				ful Event ion with Object	Non-F	ixed			vent Detail Falling, Shifting nything Set in Notor Vehicle
Traffic Control D			le Fir				Second ((2) Seque	nce of	Events	Third	(3) Seq	uence of	Event	is I			ence of Events
	o Controls	5	Ca	17 Struck B argo or Any	Object	ng, Shifting Set in Motion												
VEHICLE (Che	eck if Co	mmercia	I)	-														
Vahiala Matar)			liton		Vahli			Ctoto				-		1.0				

)	Vehicle 2	Motor Vel 1 Vehic	nicle Type le in Trans	port	Hit and Ru 1 No	-	License Number BGRDX	State FL	Reg. Expires 29/Sep/2021	Permanent Reo No	g. VIN 1C4BJWEG8	3CL174402
`	Year 2012	Make JEEP	Model WRANGLE	Style R	UT	Color BLU	Extent of Damage Disabling	Est. Damage 10000	Towed Due To Yes		icle Removed By T AND C TOWING	Rotation Rotation

DocuS	ign Envelo	ope ID: 6	62322AFF-C		C7D-399728BC3	F18	FHP	F210FF	-039340	HSM		885	51203	
Insuranc	e Compan	y	STATE	FARM INS CO	0		Insurance	Policy N	Number	C3830	59594			
Name of		wner (Che HAEL C	eck Box If Bus ARTER	siness)	Current A	ddress (Nu 2303 NW	umber and Stre 36TH PL	eet)			and State CORAL			Zip Code 33993
Trailer One:	License N MM	umber UM42	State FL	Reg. Expires 06/18/2022 00:00		VIN	5A4JVSJ1	I3E2067	7683	Year 2014	Make LC	DAD	₋ength 19	Axles 1
Trailer Two:	License N	umber	State	Reg. Expires	Permanent Reg.	VIN				Year	Make		ength	Axles
Vehicle Traveling	g: West		On Street, Roa	ad, Highway	I-'	75 / SR-93				At I	Est. Spee 70	d Poste	ed Speed 70	Total Lanes 6
CMV Co	onfiguration			(Cargo Body Type				Area of Initi	al Impact		Most	Damaged A	rea
Comm G	GVWR/GCV	VR		Trail	er Type (trailer one) Boat Trailer	Trailer	Type (trailer ty	vo)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 7 18. Unde 19. Over 20. Wind 	turn	2 3 4 1 (15 ((16		8. Undercarriage 9. Overturn 0. Windshield
Haz. Ma	t. Release	Haz M	at. Placard	Number		Class			14 13 12 11 10	9 21. Trail	-	14 13 12		1. Trailer
Motor Ca	arrier Name)			US	DOT Num	lber							
		Motor	Carrier Addre	ess			City	and Sta	ate		Z	ip Code	Phon	e Number
Comm/N	Ion-Comme	ercial V	/ehicle Body 1 16 (Sport) U	Type Jtility Vehicle	Vehicle Defects (o	,	Vehicle	Defects	(two)	Emerger	icy Vehicl 1 No	e Use S	Speciual Fun 1 No Speci	ction of MV al Function
	Maneuver / raight Ahe		rafficway 4 Two-Wa Positive Me	ay, Divided, edian Barrier	Roadway Grade 1 Level	F	Roadway Aligni 1 Straig		Most Harmfu 2 Collisio	Il Event on with Nor Object	-Fixed		armful Event tor Vehicle i	Detail n Transport
Traffic C		ce For Th controls	nis Vehicle Fi		nce of Events with Non-Fixed		Sequence of I verturn/Rollov		Third (3) Sequ	ence of Eve	nts	Fourth (4) Sequence	of Events
					nicle in Transport									
	E (Check		· _	nd Run 🛛 🕅	/eh License Number		State	Reg. Exp	pires Permar	nent Reg.	/IN			
1	1 Vehicl		·	1 No	QWMK81 Extent of Dama		FL t. Damage		r/2022 Due To Damage	No	Domovio		BP9MM7034	
Year 2021	Make INFI ce Compan	Model Q50	Style 4D	Color BLF			60000		Yes		Removed AND C T	,	Rotatic R	otation
	•				CE COMPANY				Number	10991098				
			eck Box If Bus		Current A	ddress (Nu 3301 SW	umber and Stre 92 AVE	eet)			and State	e		Zip Code 33165
Trailer One:	License N		State	Reg. Expires		VIN				Year	Make	L	ength	Axles
Trailer Two: Vehicle	License N Direct	umber	State							X	N 4 1			
Traveling		ion (n Street Roa	Reg. Expires	Permanent Reg.	VIN				Year	Make		-ength	Axles
	g: East		On Street, Roa	ad, Highway	I-	75 / SR-93				At I	Make Est. Speed 90	d Poste	ed Speed 70	Total Lanes 6
CMV Co			Dn Street, Roa	ad, Highway					Area of Initi	At I al Impact	Est. Speed 90	d Poste Most	ed Speed 70 Damaged A	Total Lanes 6 rea
	g: East		Dn Street, Roa	ad, Highway	I-	75 / SR-93	Type (trailer tv	vo)	Area of Initi 2 3 4 5 6 1 (15 (16 17)	At I al Impact	Est. Speed 90	d Poste	ed Speed 70 Damaged A 5 6 7 17 17 8 17	Total Lanes 6 rea 8. Undercarriage 9. Overturn
Comm G	g: East	VR	Dn Street, Roa	ad, Highway	I- Cargo Body Type	75 / SR-93		vo)		At I al Impact	Est. Speed 90 rcarriage turn dshield	d Poste Most	ed Speed 70 Damaged A 5 6 7 11 17 8 1 8 2	Total Lanes 6 .rea
Comm G Haz. Ma	g: East enfiguration GVWR/GCV	VR Haz M		ad, Highway	I- Cargo Body Type ler Type (trailer one)	75 / SR-93 Trailer	Type (trailer tv	vo)	2 3 4 5 6 1 (15) (16) 17	At I al Impact 7 18. Unde 8 19. Over 20. Wind	Est. Speed 90 rcarriage turn dshield	d Poste Most	ed Speed 70 Damaged A 5 6 7 11 17 8 1 8 2	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield
Comm G Haz. Ma	g: East nfiguration GVWR/GCV t. Release	VR Haz M		ad, Highway	I- Cargo Body Type ler Type (trailer one)	75 / SR-93 Trailer Class	Type (trailer ty	vo)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	At I al Impact 7 18. Unde 8 19. Over 20. Wind	Est. Speed 90 rcarriage turn dshield er	d Poste Most	ad Speed 70 Damaged A 5 6 7 11 17 8 1 2 11 10 9 2	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield
Comm G Haz. Ma Motor Ca	g: East nfiguration GVWR/GCV t. Release	VR Haz M	at. Placard Carrier Addre	ad, Highway	I- Cargo Body Type ler Type (trailer one)	75 / SR-93 Trailer Class DOT Num	Type (trailer ty	and Sta	2 3 4 5 6 1 (15 (16 17) 14 13 12 11 10 ate	At 1 ial Impact 7 18. Unde 9 20. Win 9 21. Trail	Est. Speed 90 rcarriage turn dshield er	d Poste Most 2 3 4 0 (5 (16 14 13 12) ip Code	ad Speed 70 Damaged A 5 6 7 11 17 8 2 11 10 9 2 Phon Speciual Fun	Total Lanes 6 .rea 9. Undercarriage 9. Overturn 0. Windshield 1. Trailer e Number
Comm C Haz. Ma Motor Ca Comm/N Vehicle I	g: East Infiguration GVWR/GCV t. Release	VR Haz M Motor Percial V Action T	at. Placard Carrier Addre /ehicle Body 1 1 Passe rafficway	Ad, Highway	I- Cargo Body Type er Type (trailer one) US	75 / SR-93 Trailer Class DOT Num DOT Num	Type (trailer ty ber City	and Sta Defects ment	2 3 4 5 6 1 (15 (16 17) 14 13 12 11 10 ate (two)	At I ial Impact 7 18. Unde 9 20. Win 9 21. Trail	Est. Speed 90 rcarriage dshield er Z ncy Vehicl 1 No	d Poste Most 2 3 4 0 (5 (16 14 13 12 ip Code e Use S Most Ha	Phon Speciual Fun 1 No Speci	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield 1. Trailer e Number ction of MV al Function
Comm C Haz. Ma Motor Ca Comm/N Vehicle I 1 St	g: East infiguration GVWR/GCV t. Release arrier Name Non-Comme Maneuver / raight Ahe	VR Haz M Motor Percial V Action T ad	at. Placard Carrier Addre /ehicle Body 1 1 Passe a Two-Wa Positive Me	ad, Highway ad, Highway Trail Trail Number ess Type nger Car ay, Divided, edian Barrier irst (1) Sequer	I- Cargo Body Type er Type (trailer one) US Vehicle Defects (1 Nc Roadway Grade 1 Level	75 / SR-93 Trailer Class DOT Num DOT Num DOT Num Second (2)	Type (trailer ty ber City Vehicle Roadway Aligni	and Sta Defects ment ght Events	2 3 4 5 6 1 (15 (16 17) 14 13 12 11 10 ate (two) Most Harmfu 2 Collisic Third (3) Sequ	At I al Impact 7 18. Unde 8 19. Over 20. Wim 9 21. Trail Emerger al Event on with Nor Object	Est. Speed 90 rearriage turn dishield er Z ncy Vehicl 1 No -Fixed Fixed	d Poste 2 3 4 0 15 (16 14 13 12 ip Code e Use S 14 Mot	Phon Speciual Fun 1 No Speci	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield 1. Trailer e Number e Number ction of MV al Function Detail n Transport
Comm C Haz. Ma Motor Ca Comm/N Vehicle I 1 St Traffic C	g: East infiguration GVWR/GCV t. Release arrier Name Non-Comme Maneuver / raight Ahe	VR Haz M Haz M e ercial V Action T ad Ce For Th controls	at. Placard Carrier Addre /ehicle Body 1 1 Passe a Two-Wa Positive Me	ad, Highway ad, Highway Trail Trail Number ess Type nger Car ay, Divided, edian Barrier irst (1) Sequer	I- Cargo Body Type er Type (trailer one) US Vehicle Defects ((1 Nc Roadway Grade 1 Level nce of Events	75 / SR-93 Trailer Class DOT Num DOT Num DOT Num Second (2)	Type (trailer tw ber City Vehicle Roadway Aligne 1 Straig Sequence of f	and Sta Defects ment ght Events	2 3 4 5 6 1 (15 (16 17) 14 13 12 11 10 ate (two) Most Harmfu 2 Collisic Third (3) Sequ	At I al Impact 7 18. Unde 19. Over 20. Win- 9 21. Trail Emerger I Event on with Nor Object ence of Eve	Est. Speed 90 rearriage turn dishield er Z ncy Vehicl 1 No -Fixed Fixed	d Poste 2 3 4 0 15 (16 14 13 12 ip Code e Use S 14 Mot	Ad Speed 70 Damaged A 5 6 7 11 17 8 2 11 10 9 2 Phon Speciual Fun 1 No Speci armful Event tor Vehicle i	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield 1. Trailer e Number e Number ction of MV al Function Detail n Transport
Comm G Haz. Ma Motor Ca Comm/N Vehicle I 1 St Traffic C PERSO	g: East Infiguration GVWR/GCV t. Release arrier Name Ion-Comme Maneuver / raight Ahe Sontrol Devi 1 No C	VR Haz M ercial V Action T ad T ce For Th ontrols	at. Placard Carrier Addre /ehicle Body 1 1 Passe rafficway 4 Two-Wa Positive Me nis Vehicle Fi	A Highway ad, Highway Trail Number ess Type edan Barrier irst (1) Sequer 43 Ran Off	I- Cargo Body Type er Type (trailer one) US Vehicle Defects (o 1 No Roadway Grade 1 Level nce of Events Roadway, Left	Trailer Class DOT Num one) Second (2) 14 Motor	Type (trailer tw ber City Vehicle Roadway Aligne 1 Straig Sequence of f	and Sta Defects ment ght Events	2 3 4 5 6 1 (15 (16 17) 14 13 12 11 10 ate (two) Most Harmfu 2 Collisic Third (3) Sequ	At I al Impact 7 18. Unde 8 19. Over 20. Win 9 21. Trail Emerger Il Event on with Nor Object ence of Eve ardrail Fac	Est. Speed 90 rearriage dshield er Z ney Vehicl 1 No -Fixed nts e	d Poste 2 3 4 0 15 (16 14 13 12 ip Code e Use S 14 Mot	ed Speed 70 Damaged A 5 6 7 11 10 9 2 Phon Speciual Fun 1 No Speci armful Event tor Vehicle i	Total Lanes 6 rea 8. Undercarriage 9. Overturn 0. Windshield 1. Trailer e Number e Number ction of MV al Function Detail n Transport

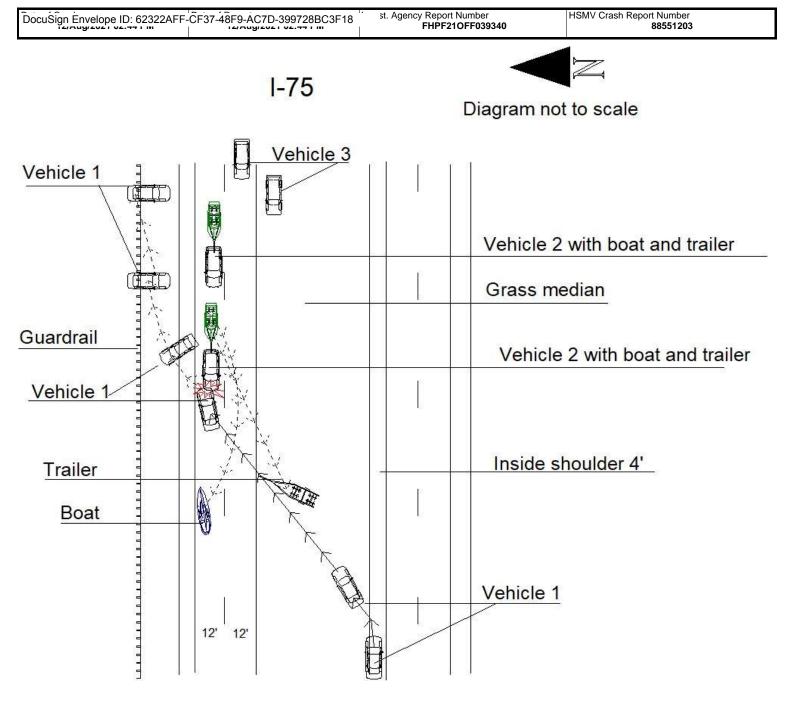
Req. End. 3 No Req Endorsement Injury Severity 3 Non-incapacitating Ejection 2 Ejected, Totally

DL Type 7 None

Expires 26/Feb/2028

Driver License Number J520019010660 State

FL


DocuSign Envelope				D-399728B0	C3F1	8 st. Age		PF21OFF03				ash Report 8	Number 8551203	
Restraint System 2 None Used -Mote Vehicle Occupan			Helme	et Use	E	Eye Protection		Seating Loca 1	ation Seat Left	t Se	ating Location 1 Fro		Seating	Location Other
Drivers Actions at Tim 31 Operated MV ir	e of Crash (first) Erratic, Reckless Manner	or Aggress	sive	Drivers Action	ons a	t Time of Crasl	h (secor	ıd)			Distracted By Not Distract		ision Ob 1 Visio	struction n Not Obscured
Drivers Actions at Tim	e of Crash (third)			Drivers Actio	ons a	t Time of Crasl	h (fourth)		Drivers	Condition at 77 Oth	Time of Cr ner, Explai		ative
Suspected Alcohol Us 1 No	Alcohol Tested 1 Test Not Given	Alcohol	Test Ty	ype Alcoł	nol Te	est Result B	AC	Suspected E 1 No		Drug To 1 Test	ested Not Given	Drug Test	Туре	Drug Test Result
Source of Transport to 2 E		EMS Ag		lame or ID LIER COUNT	YEN		MS Rur	Number 210-53-1	24	Me	edical Facility LE	/ Transport		PITAL
PERSON RECORD			News						Data af	Diath	0	Dhama		De Fuerr
	Driver	/ehicle # 2	Name		ЛІСН	AEL CARTE			Date of 29/Se	ep/1971	Sex 1 Male		Number	Re-Exam No
Address 2303 NW		City		CAPE CORA	L		state		FL		Zip Co	ode	33993	
Driver License Numbe C636540713		FL	E	Expires 29/Sep/20	021	DL Type 5 E/Op	perator	Req. Er 3 End	nd. No Req Iorsemen		ury Severity 4 Incapac	itating	Ejectio 1	n Not Ejected
Restraint System 3 Shoulder and Lap Used	Air Bag Deploy 3 Deploye		Helme	et Use	E	Eye Protection		Seating Loca	ation Seat Left	t Se	ating Locatio 1 Fro		Seating	Location Other
Drivers Actions at Tim 1 No	e of Crash (first) Contributing Actio	n		Drivers Action	ons a	t Time of Crasl	h (secor	ıd)			istracted By Not Distract		ision Ob 1 Visio	struction n Not Obscured
Drivers Actions at Tim	-			Drivers Actio	ons a	t Time of Crasl	h (fourth)		Drivers	Condition at	Time of Cr Apparently	ash	
Suspected Alcohol Us 1 No	Alcohol Tested 1 Test Not Given	Alcohol	Test T	ype Alcol	nol Te	est Result B	AC	Suspected I 1 No		Drug T 1 Test	ested Not Given	Drug Test	Туре	Drug Test Result
Source of Transport to 2 E		EMS Ag		lame or ID L IER COUNT	YEN			Number 2021-08-120	0053124	Me	edical Facility NAPL	/ Transport ES COMM		IOSPITAL
PERSON RECORD						I								
Person# Description 3 3 Pa	ssenger	/ehicle # 2	Name		IELL	I LYNN CART	ER		Date of 02/Ja	Birth n/1974	Sex 2 Female	Injury S e 5 Fat	everity al (withir days)	a 30 Ejection Ejected
Address	2303 NW 36TH P	LACE			City			CAPE COF	RAL			State	FL	Zip Code 33993
Restraint System 3 Shoulder and Lap Used	Air Bag Deploy 3 Deploye		Helme	et Use	E	Eye Protection		Seating Loc	ation Seat 3	t Se	eating Location	on Row	Seating	Location Other
Source of Transport to 2 E	,	EMS Ag		lame or ID L IER COUNT	Y EN		MS Rur	Number 210-53-1	24	Me	edical Facility	/ Transport		PITAL
PERSON RECORD														
	Driver	/ehicle # 3	Name		ERON	NICA IGLESI			Date of 06/Oc	Birth ct/1970	Sex 2 Female	e 336	Number -301-227	7 Re-Exam No
	6TH TER	City		CAPE COR	L		state		FL		Zip Co	ode	33990	
Driver License Numbe I242860708		FL	E	Expires 06/Oct/20	027	DL Type 5 E/O f	perator		nd. No Req Iorsemen		ury Severity 1 Nor	ne	Ejectio 1	n Not Ejected
Restraint System 3 Shoulder and Lap Used	Air Bag Deploy 2 Not Dep		Helme	et Use	E	Eye Protection		Seating Loca 1	ation Seat Left	t Se	eating Locatio 1 Fro		Seating	Location Other
Drivers Actions at Tim 1 No	e of Crash (first) Contributing Actio	n	1	Drivers Actio	ons a	t Time of Crasl	h (secor	ıd)			Distracted By Not Distract		ision Ob 1 Visio	struction n Not Obscured
Drivers Actions at Tim	e of Crash (third)			Drivers Actio	ons a	t Time of Crasl	h (fourth)		Drivers	Condition at	Time of Cr Apparently		
Suspected Alcohol Us 1 No	Alcohol Tested 1 Test Not Given	Alcohol	Test T	ype Alcol	nol Te	est Result B	AC	Suspected E 1 No		Drug To 1 Test	ested Not Given	Drug Test	Туре	Drug Test Result
Source of Transport to 1 Not Tra		EMS Ag	jency N	lame or ID		E	MS Rur	Number		Me	edical Facility	/ Transport	ed To	<u> </u>
PERSON RECORD	1													
Person# Description 5 3 Pa	ssenger	/ehicle # 3	Name		RY	IGLESIAS ME	DINA		Date of 18/Fe	Birth b/2006	Sex 1 Male	Injury S	everity I None	Ejection 1 Not Ejected
Address	203 SE 16TH T	ER	<u></u>	(City			CAPE COF	RAL			State	FL	Zip Code 33990
Restraint System 3 Shoulder and Lap Used	Air Bag Deploy 3elt 1 Not App		Helme	et Use	E	Eye Protection		Seating Loc	ation Seat 3	t Se	eating Location 2	on Row	Seating	Location Other

	//////////////////////////////////////	e ID: 62322AFF-CF3	12/7ug/2021 02.7			FHPF21OFF0393	40	8855	1203
	Fransport to 1 Not Tra	Medical Facility nsported	EMS Agency Name of	r ID	EN	1S Run Number	Medic	al Facility Transported T	Го
/IOLATIO	ONS		I				L		
Person# 1	Name	AMARI XAVIER CA	LVIN JONES	Florida Statu 322.3	ite Number 4(6)(a)		NITHOUT A DL CA ERIOUS BODILY I	USING DEATH OR NJUR	Citation ACYF6OE
Person# 1	Name	AMARI XAVIER CA	LVIN JONES	Florida Statu 316.19	ite Number 35(4)(a)		E OFFICER AFTER PROPERTY DAMA	CRASH INVOLVING	Citation ACYF6QE
Person# 1	Name	AMARI XAVIER CA	LVIN JONES	Florida Statu 316.19	ite Number 2(3)(c)2	Charge RECKLESS I	DRIVING- SERIOUS	S BODILY INJURY	Citation ACYF6RE
Person# 1	Name	AMARI XAVIER CA	LVIN JONES	Florida Statu 322.3	ite Number 4(6)(a)		WITHOUT A DL CA ERIOUS BODILY I	USING DEATH OR NJUR	Citation ACYF6PE
NON VEHI	ICLE PRO	OPERTY DAMAGE		1		1			-1
Vehicle# Pe	erson# Pro B	perty Damage - Other 1 OAT - 2010 DENO MA OUTBOARD	Than Vehicle Est. Amo RINE - 17' - 500	ount Business 0 No		lame Ado E L CARTER	dress 2303 NW 36TH P	City & State CAPE COR	Zip Cod AL FL 3399
NON VEHI	ICLE PRO	OPERTY DAMAGE	U						
Vehicle# Pe	erson# Pro	perty Damage - Other 1 GUARDRAIL	Than Vehicle Est. Amo 1000	ount Business 0 Yes			dress 2981 NE PINE ISLA ROAD	City & State CAPE COR	Zip Cod AL FL 3390

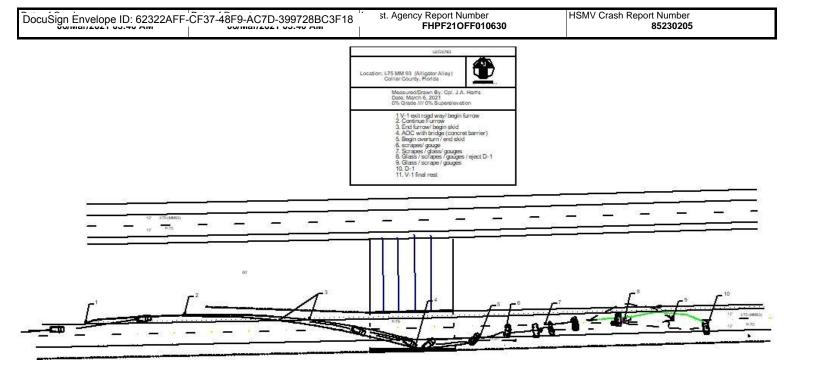
NARRATIVE

DocuSign Envelope ID: 62322AFF	-ĈF37-48F9-AC7D-399728BC3F18	st. Agency Report Number FHPF210FF039340	HSMV Crash Report Number 88551203
ID Number Rank Name 1452 SGT D.W. COOPER		 ne Number Date Created 239-344-1730 Aug 13, 2021	
Vehicle 1 was traveling east at a high Interstate 75 in the inside lane. Vehicl crossed the center grass median. Veh came to final rest on the north should westbound travel lanes facing norther Vehicle 3 came to rest in the median f	e 3 was traveling west on Interstate 75 di icle 1's right front collided with vehicle 2 er of Interstate 75 with the right front and ast. The boat and trailer became separate	de lane in the area of the 97-mile marker. Vehi irectly behind vehicle 2. Vehicle 1 approached 2's right front. Debris from this crash struck th d rear guardrail and the front in emergency lan ed from vehicle 2 with the boat facing east in t	cle 2 (Jeep towing boat) was traveling west on slower traffic ahead, veered left, rotated and le front left of vehicle 3. Vehicle 1 rotated and ne. Vehicle 2 rotated and came to rest on the he outside lane and the trailer in the median.
Name of Deceased: Shelli Lynn Carter Date of Birth: 01/02/1974 Date of Death: 08/12/21 Time of Death: 7:36 PM Pronounced By: Dr. Robert O'Connor THI Case: FHP721-64-016. FLAIR Investigator: Master Corporal J Photographs Taken By: Corporal John	(Lee Memorial Hospital). Iohn T. Schultz ID 478 (Florida Highway I	Patrol). is ID 979 and Corporal Justin Close ID 753.	
ID Number Rank Name 2333 LT J.A. VAN ARSDALE	Troop / Post Officer Agency Pho F FLORIDA HIGHWAY PATROL	ne Number Date Created L 239-344-1730 Sep 20, 2021	
This update was performed due to con during this investigation, and these co	rrections needed for this report created b prrections are being made to correct erro	by Sergeant D. Cooper. Sergeant Cooper retir ors and update new information obtained duri	ed from the Florida Highway Patrol (FHP) ng the investigation.
		ed from an attempted traffic stop by Sergeant overtake Amari Jones for another traffic stop	Cooper on southbound I-75 at mile marker 117
iii) v-uz overturneu arter the crash oc	CR 951. " "non-collistion / overturned". /ehicle. Is "other". seatbelt on. d in combination. th were "incapacitating" lane of westbound I-75 and the area of co lane of I-75, and was not behind V-02.		
The diagram has been changed to refl	ect these updates.		
ID Number Rank Name 2333 LT J.A. VAN ARSDALE This update is to reflect the current op		ne Number Date Created 239-344-1730 Oct 22, 2021	
ID Number Rank Name 2333 LT J.A. VAN ARSDALE	Troop / Post Officer Agency Pho	 ne Number Date Created L 239-344-1730 Nov 22, 2021	
	pen Traffic Homicide Investigation as of I	,	
ID Number Rank Name 2333 LT J.A. VAN ARSDALE	Troop / Post Officer Agency Pho F FLORIDA HIGHWAY PATROL	 ne Number Date Created L 239-344-1730 Dec 22, 2021	
	pen Traffic Homicide Investigation as of N		
ID Number Rank Name 2333 LT J.A. VAN ARSDALE	Troop / Post Officer Agency Pho F FLORIDA HIGHWAY PATROL	 ne Number Date Created L 239-344-1730 Feb 20, 2022	
This update is to reflect the current or	pen Traffic Homicide Investigation as of S	Sunday, February 20, 2022.	
ID Number Rank Name 2333 LT J.A. VAN ARSDALE As of Wednesday, March 16, 2022, this	F F FLORIDA HĬGHŴAY PATROL	ne Number Date Created L 239-344-1730 Mar 16, 2022	
REPORTING OFFICER	o and involugation to complete.		

ID/Badge #	Rank and Name	Department	Type of Department
2333	LT J.A. VAN ARSDALE	FHPF	FHP

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18 UPDATE

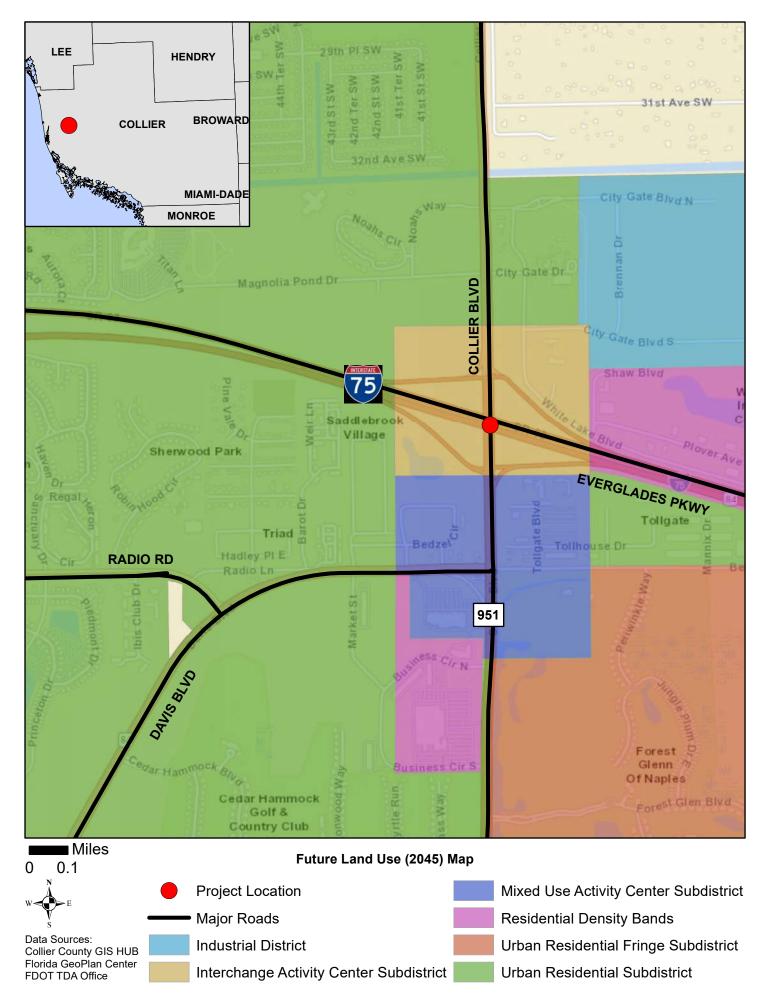
LONG FORM X SHORT FORM 1


(Electronic Version)

HIGHWAY SAFETY & MOTOR VEHICLES, TRAFFIC CRASH RECORDS NEIL KIRKMAN BUILDING, TALLAHASSEE, FL 32399-0537

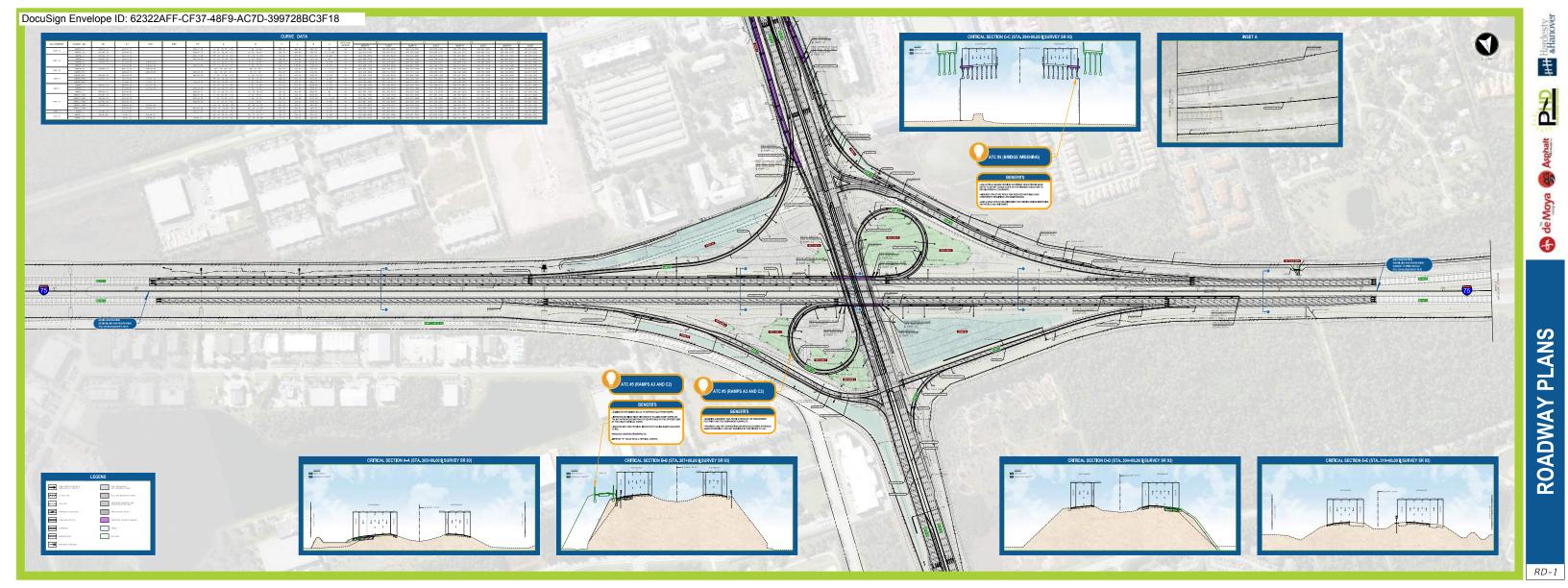
Date of Crash 06/Mar/2021	03:40 AM	Time of Cra 06/Mar/20	ash 021 03:40 AM		f Report I ar/2021 12:48 F		est. Age		eport Nun PF21OFI		30		HSMV	Crash	Report N 85	lumber 230205		
CRASH IDEN	TIFIERS	1		1		I							1					
County Code 64	City Cod	le Co 0	ounty of Crash	OLLIE	R	Place	or City UN		h RPORAT	ED		Within	City Limit No	S	Time Re 06/Ma 03:4	ported ar/2021 4 AM	Time Dis 06/Mai 03:49	/2021
Time on Scene 06/Mar/2021 04:00 AM		eared Scene 7/2021 01:36 PM		Reaso	n (if Investigatio	n NOT C	Complet	ed)							Noti	ified By Law E	nforceme	nt
ROADWAY II	FORMA	ΓΙΟΝ		1														
Crash Occured	On Street,		vay -75 N (SR-93)				0	At Sti	eet Addro	ess#			At L 26.15		e 0000000		Longitude 54630000	
At Feet	Or Miles 8.	.00	rection East	OFror	n Intersection W	/ith Stree	et, Roac	d, Highv	vay CR 951							O Or Fr	om Milepo	ost #
Road System Id		nterstate		Т	ype Of Shoulde		1 Pave	ad a			Ту	/pe Of	Intersecti		at Inter	soction		
CRASH INFO			Fictures Ta	ken)	X		IFave	u						TNO	at mer	Section		
light Condition	ot Lighted		er Condition 1 Clear	,	Roadway Sur	rface Cor 1 Dry	ndition	Sch	ool Bus F	Relate	d 1 No				er Of Col 7 Other		in Narrat	ive
First Harmful E	vent Type		First Harmful Ev	/ent 30	F	First Harr		ent Loc			Within Ir	ntercha No	nge F	irst Har		ent Relati Non.Juno	on to Junc tion	tion
Contributing Ci		s: Road 1 None		C	Contributing Circ	umstanc	es: Roa	ad			C	ontribu	ting Circu	mstand	ces: Roa	d		
Contributing Ci	cumstance		ent	С	Contributing Circ	umstanc	es: Env	/ironme	nt		C	ontribu	ting Circu	mstand	ces: Envi	ironment		
Work Zone Rel 1 No	ated Cra	sh In Work Z	Zone		Туре С	Of Work Z	Zone				Work	ers In V	Vork Zon	e L	aw Enfo	rcement	In Work Zo	one
VEHICLE (Ch	eck if Co	mmercial)			I													
Vehicle Motor 1 Ve	Vehicle Typ hicle in Tra		t and Run 1 No	Veh Li	cense Number AZ87276		State	IL	Reg. Exp 16/Fe			nanent No	Reg. VI	N	1C4PJ	MDX3JD	578159	
Year Make 2018 JEE	Model	Style	Color IT BI	ĸ	Extent of Damag Disabling		st. Dam 200	nage 000	Towed		To Dama (es	ige \	Vehicle R		d By T OWIN		otation Rotati	on
Insurance Com	pany	G	EICO INS CO				In	nsuranc	e Policy I	Numb	er		4532611	508				
Name of Vehicl MICHEL		heck Box If			Current Ac 3500 EL				,				City a	nd Stat			•	Code 210
Trailer Licens One:	e Number	State	Reg. Expire	es Pe	ermanent Reg.	VIN						Ye	ear	Make	e	Length	Axle	S
	e Number	State	Reg. Expire	es Pe	ermanent Reg.	VIN						Ye	ar	Make	е	Length	Axle	6
	irection South	On Street, I	Road, Highway		I-7	5 (SR-93	3)						At Es	t. Spee 88	ed Pos	ted Spee 70	d Tota	Lanes 4
CMV Configura	tion	1		Cargo	Body Type						Area of I	nitial In	npact		Mo	st Damag	ed Area	
Comm GVWR/	GCWR		Tra	ailer Typ	be (trailer one)	Traile	er Type	(trailer	two)		3 4 5	6 7	18. Underca 19. Overtu	rn	2 3 4	5 6	, 18. Unde	ercarriage erturn
Haz. Mat. Relea	ase Haz	Mat. Placard	I Number		(Class				14 1		10 9	20. Winds 21. Trailer		14 13 1	2 11 10	20. Win 21. Trai	
Motor Carrier N	ame				USI	DOT Nur	mber											
	Moto	or Carrier Ad	ldress					Cit	ty and Sta	ate				Z	Zip Code	•	Phone Nur	nber
Comm/Non-Co	mmercial	Vehicle Boo 16 (Sport	dy Type t) Utility Vehicl		hicle Defects (or 1 Nor	,		Vehicle	e Defects	(two)		E	mergenc	y Vehic 1 No	le Use		Function	
Vehicle Maneur 1 Straight		Trafficway 4 Two- Positive	Way, Divided, Median Barrie		adway Grade 1 Level		Roadw	ay Alig 1 Stra		N	lost Harn 1		ent Collision				vent Detai rn/Rollov	
Traffic Control I	Device For	This Vehicle			Events S	econd (2 30 Coi			Events Barrier	Thi			e of Even /Rollove		Fourth	(4) Seque	ence of Ev	ents
			43 Ran O	ff Road	lway, Left													
PERSON RE																		
Person# Descr	ption 1 Driv	or	Vehicle #	Name	EDDY	IFAN		NT			Date of B		Sex 1 M		Phone N	lumber	Re-E	xam

2	1 Driver		1	EDDY .	JEAN LAURENT		29/Nov/2003	1 Male		No
Address			City		State			Zip Code		
	123 SAN AVELLINO CT			BRADENTON		FL			34208	
Driver Lie		State		Expires	DL Type	Req. End.			Ejection	
	UK				7 None		5 Fatal	l (within 30 days)	2 Ejected	, Totally


DocuSign Enve	elope ID:	62322AFF-0	CF37-48F9-AC7E)-399728BC	3F18 ^{st.}		eport Number	630	HSMV Cr	ash Report I 8	Number 5230205	
Restraint System		Air Bag Deploy	ved Helme	et Use	Eve Protect	on	Seating Locat	ion Seat	Seating Locati	on Row	Seating	g Location Other
2 None Used - Vehicle Occu	Motor	6 Deployed-Co			3 Not App		1 Lo		1 Fro		Count	
Drivers Actions at 17		Crash (first) ed Posted Spe	ed	Drivers Actio	ns at Time of Ci 26 Ran c				iver Distracted By 2 Electroni Communication I (cell phone, e	c Devices		struction n Not Obscured
Drivers Actions at 29 O		Crash (third) cting/Over.Ste	eering	Drivers Actio	ons at Time of C	rash (four	th)	Dr	ivers Condition at			
Suspected Alcoho	ol Use	Alcohol Tested	d Alcohol Test Ty	/pe Alcoh	ol Test Result	BAC	Suspected Dr	ua Use D	Prug Tested	Drug Test	Type	Drug Test Result
88 Unknov		1 Test Not Given					88 Unkno		Test Not Given		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Source of Transpo 1 Not	ort to Mec t Transpo	,	EMS Agency N	ame or ID		EMS R	un Number		Medical Facilit	y Transporte	ed To	
WITNESSES												
Name AARON CHRIS	TOPHER		Address 12945 VAND	ERBILT DR	UNIT 504	City	NA	PLES		State FL		Zip Code 34110
NARRATIVE												
ID Number Ra 3389 CPL	ink Na J.A. H	me T ARRIS F	roop / Post Office FLORIDA H	r Agency	Phone Nu TROL 239-3		ate Created Mar 06, 2021					
ASSIGNMENT												
On Saturday, Mar Interstate-75 at M	rch 6, 202 Aile Marke	21 at 4:04 a.m. er 93. Collier 0	., the Florida High County, Florida. I a	way Patrol R	egional Comm ene on that sar	unicatior	ns Center notifi t 5:27 a.m. and	ed me of	this fatal traffic o	rash that o	ccurred	on Southbound
CRASH ANALYS		,	,,,,,,			··· ·· , ··						
many investigative video footage of	ve details this cras	s used to form h. Recorded	e and any followir physical evidence pulate the summari weather condition -Sunset Calendar	ized conclus is for the dat	ions in this rep	ort may	also be found i	in the "Fie	eld Notes" packe	t for this ca	se. The	Total Station 12 ase. Additionally, are was no known of record for that
I-75 in the area of direction, its des calculated coeffic of the bridge had	f the cras ignation cient of fi l a calcula	h was a flat a was a northbo riction value o ated coefficier	nd level four-lane ound and southbor of .78. This portior nt of friction value	highway orie und highway of I-75 was of .78. The p	ented in an eas . Each lane of constructed w posted speed li	t and we I-75 mea ith a 90' (mit of I-7	st direction. A sured 12' in wi concrete bridge 5 was 70 miles	Ithough th dth and w e that tran s per hour.	his portion of I-75 vas constructed of sected a manma	5 was orien of traffic wo ide drainag	ted in ai orn asph e waterv	n east and west alt with a way. The surface
D01, Eddy Jean L toward Collier Co positions of V01. utilize the occupa Conquistador Pa D01's identity wa	Laurent (I ounty. V(Addition ant restra irkway. D is confirm	DOB: 11/29/20 D1 was a sport nally, V01 was aint system of D01 did not po ned by fingerp	03), operated V01, t utility vehicle equ s equipped with su V01 and the airba ssess a valid Flori print.	a black 201 upped with a pplemental i gs deployed da operator	8 Jeep Cheroka a Type II-A occi restraint syster . On the morni s license. D01	ee from 3 upant res n (SRS) d ing of the was ider	500 El Conquis straint system o consisting of a crash, D01 sto ntified as the d	stador Par consisting combinat ole V01 fro river and s	rkway, Bradento g of a lap belt and tion of front, side om parking spac sole occupant of	n, Florida a d shoulder and knee a e number 2 V01 by the	nd trave harness airbags. 62 at 35 first on	eled south on I-75, for all occupant D01 did not 00 El scene witness.
												d or contributed to
concrete bridge v traveled 70' and o	wall. The	right front of ed. V01 overtu	n I-75 in V01. Afte ane and continued steer, V01 began t e. V01 created a cr adway and headed V01 collided with urned for 210' and e lane faced north.	the bridge w ejected D01	vall redirecting	V01 nort	heast into a rig the inside lane	ht-side le	ading slide prec	ipitating an ional 36' an	overtur	ning event. V01
Traffic crash and and 96 miles per	l reconstr hour as l	ruction combine lost control	ned speed formula I of V01.	as across mu	ultiple surfaces	were us	ed to determin	e V01 trav	veled at a minimu	ım speed b	etween	88 miles per hour
After V01 came to	o rest, mo	otorists stopp	ed on scene and r	notified 9-1-1	. Collier Count	ty EMS a	nd Greater Nap	oles Fire R	Rescue responde	d to the sc	ene and	assessed D01.
On March 6, 2021	I, Parame	edic Will Hami	Iton pronounced [001 decease	d on scene at 3	:56 a.m.						
			drea Minyard of th chest and abdome					rformed tl	he autopsy of D0	01. Dr. Miny	ard cor	cluded the cause
By stealing V01 f report was filed ι	rom the r under cas	registered own se number: 20	ner and causing da 10-006179 with Ma	amage to it, anatee Count	D01 was in viol ty Sheriff's Dep	ation of artment.	Florida State S	tatute 812	2.014 (1a3b) entit	led "Grand	Theft".	A stolen vehicle
By operating V01	l without	a valid Florida	a Driver License, D	001 was in vi	olation of Flori	da State	Statute 322.03	(1) entitled	d "Drivers must	be licensed	".	
By operating V01 "Unlawful speed'	l at a spe ".	ed between 88	8 and 96 miles per	hour where	the posted spe	ed limit i	is 70 miles per	hour, D01	l violated Florida	State State	ute 316. ⁻	183 entitled
			d exiting the road									
CASE CLOSING		Person - this ir	nvestigation is cor	nplete, and r	no charges will	be filed	because the at	-fault pers	son expired as a	result of th	is crash	
REPORTING O	FFICER											
ID/Badge # 3389	Rank and	d Name	CPL J	.A. HARRIS			Depa	artment FLORID	A HIGHWAY PA	TROL	Туре о	f Department FHP

I-75/SR 93 at SR 951/Collier Boulevard Interchange

Appendix E: Land Use Map

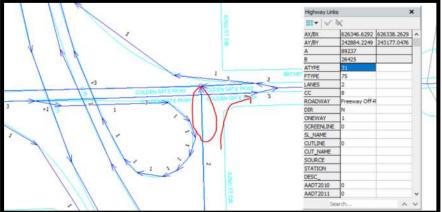


I-75/SR 93 at SR 951/Collier Boulevard Interchange

Appendix F: Conceptual RFP and D/B Figures

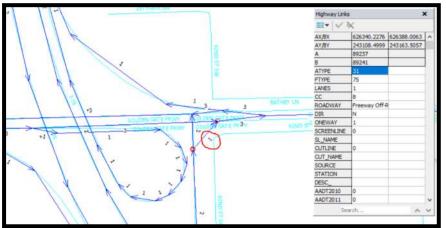
DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

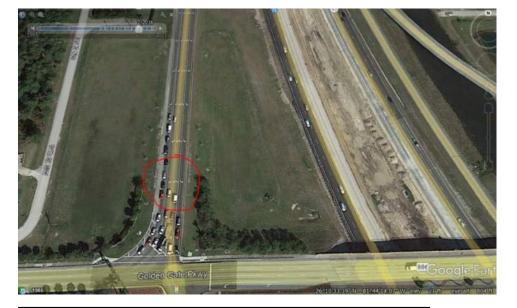
I-75/SR 93 at SR 951/Collier Boulevard Interchange

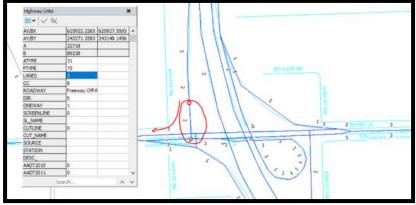

Appendix G: Travel Demand Forecasting Information

D1RPM Subarea 2015 and 2045 Network Updates

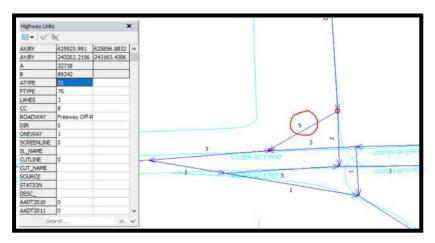
Lane Number Update

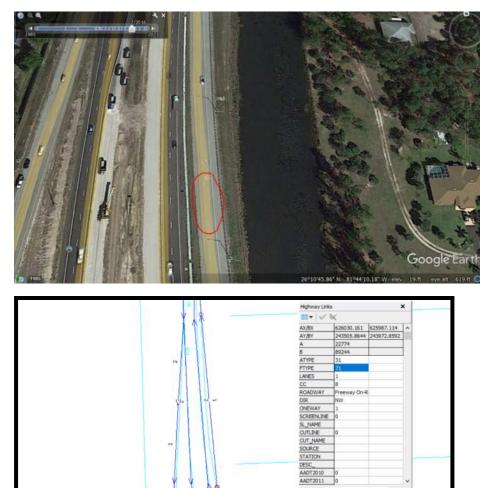

1. I-75 NB off-ramp should be connected to Gates Pkwy EB



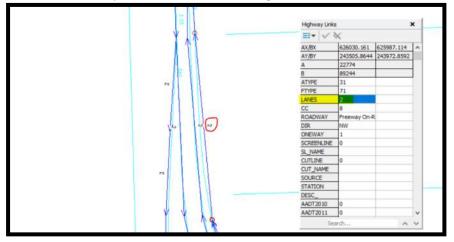

Added a new link with Lanes=1

•

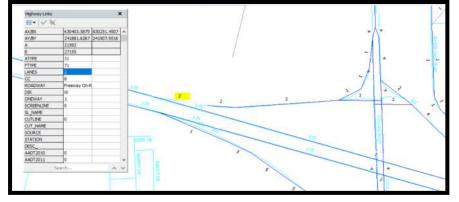


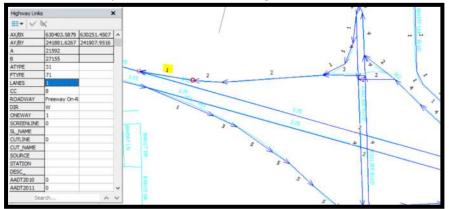

2. I-75 SB off-ramp should be connected to Golden Gates Pkwy WB

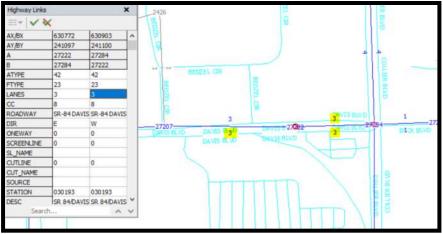
• Added a new link with Lanes=3

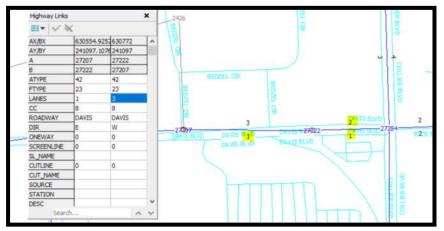


3. I-75 NB on-ramp

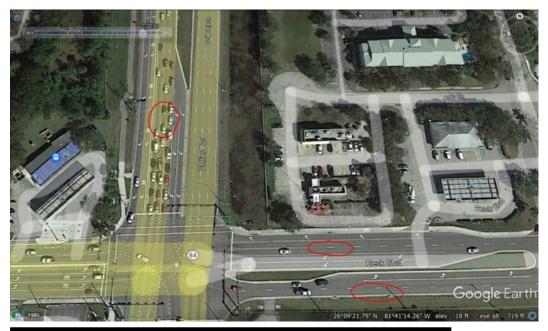

• Link update: Lanes=1 was changed to Lanes=2

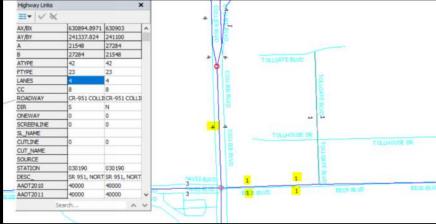

~ v


4. Collier SB on ramp should be 1 lane when merging into I-75 (2015 only)

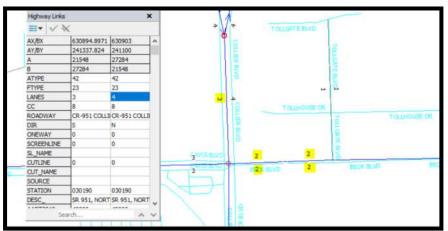


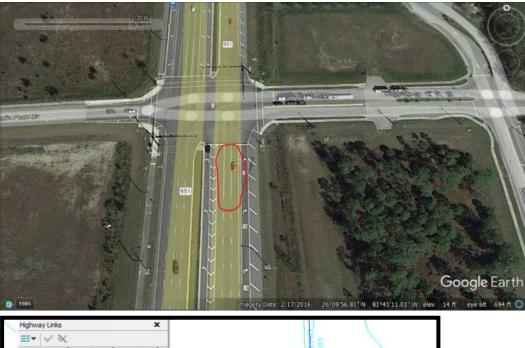
5. Beck Blvd, west of Collier Blvd

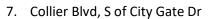


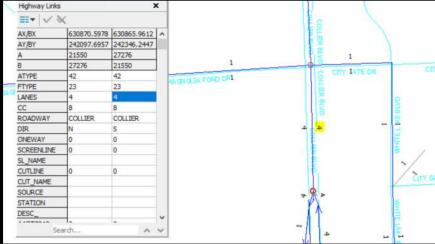


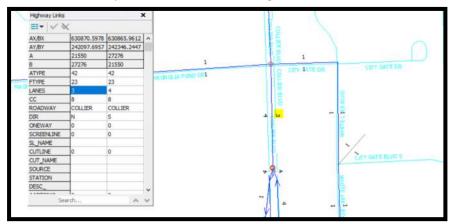
- Link update: Lanes=3 was changed to Lanes=2
- Link update: Lanes=3 was changed to Lanes=1

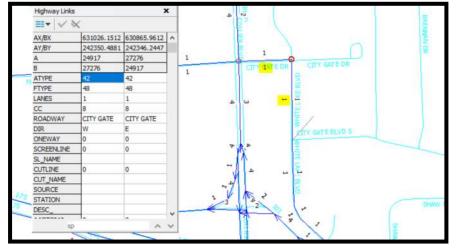


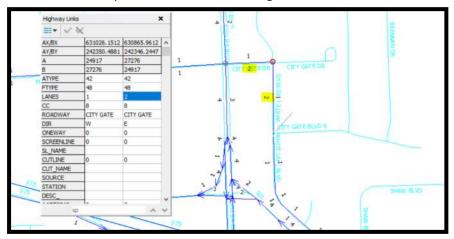

6. Collier Blvd and Beck Blvd

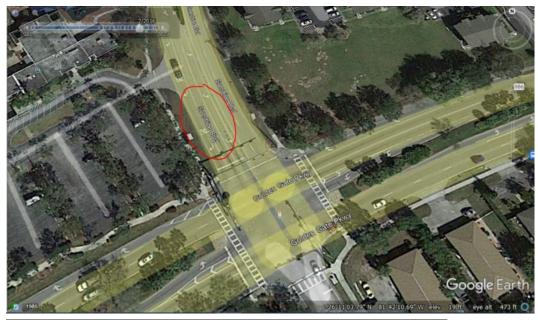


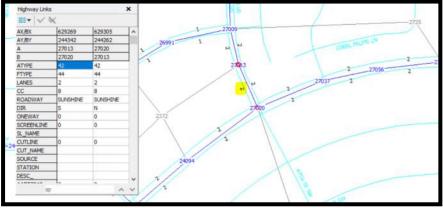


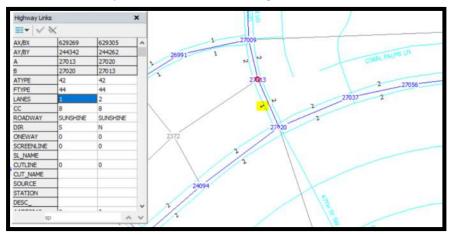

- Link update: Lanes=4 was changed to Lanes=3
- Link update: Lanes=1 was changed to Lanes=2

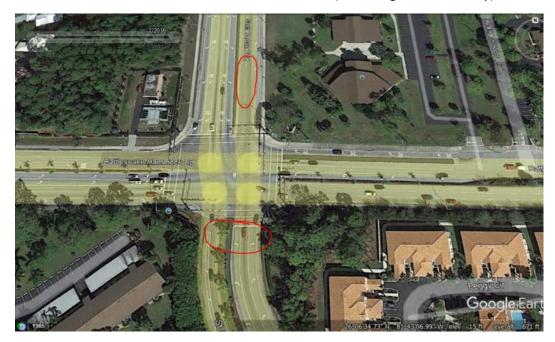


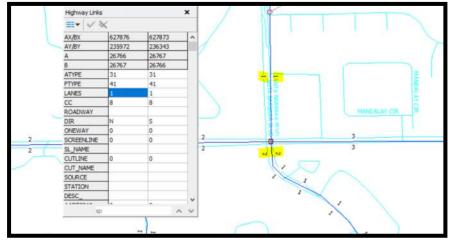


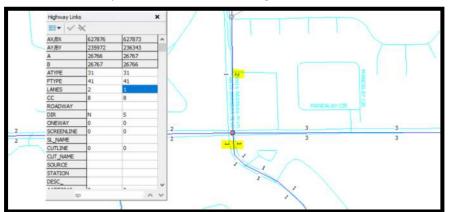


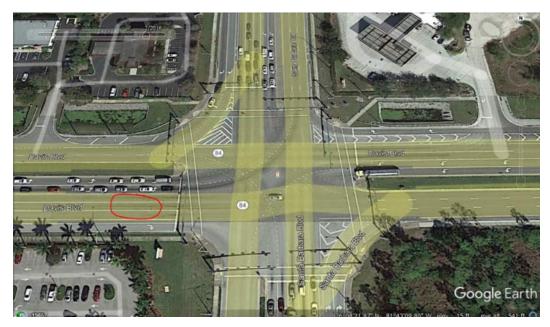

8. City Gate Dr, W of Collier Blvd



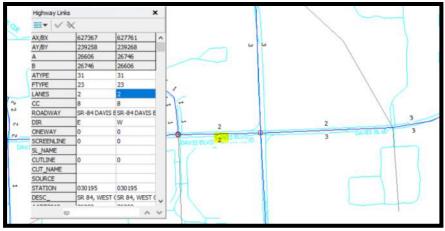


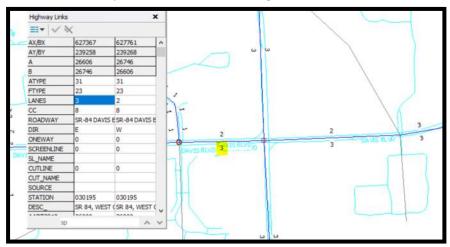

9. Sunshine Blvd SB, N of Golden Gate Pkwy

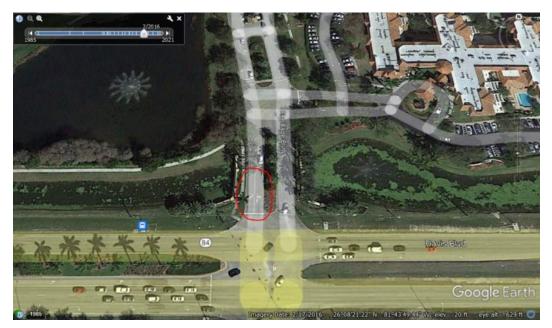


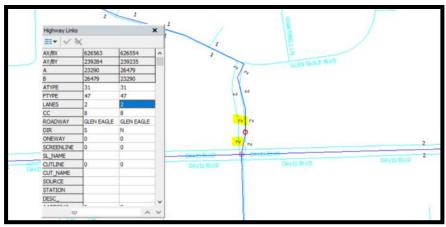


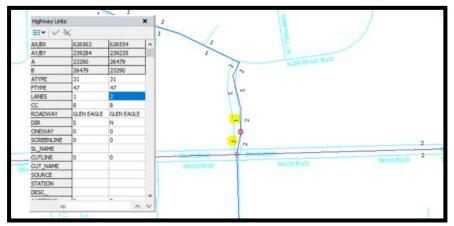
10. St Andrews Blvd at Rattlesnake Hammock Rd (North segment 2015 only)



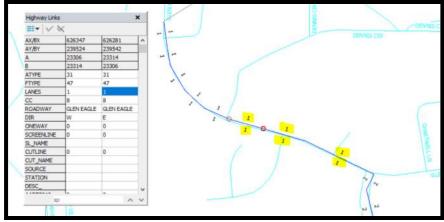

- Link update: Lanes=2 was changed to Lanes=1
- Link update: Lanes=1 was changed to Lanes=2

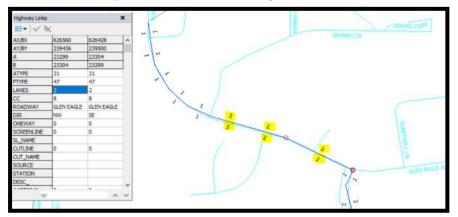



11. Davis Blvd EB, W of Santa Barbara Blvd

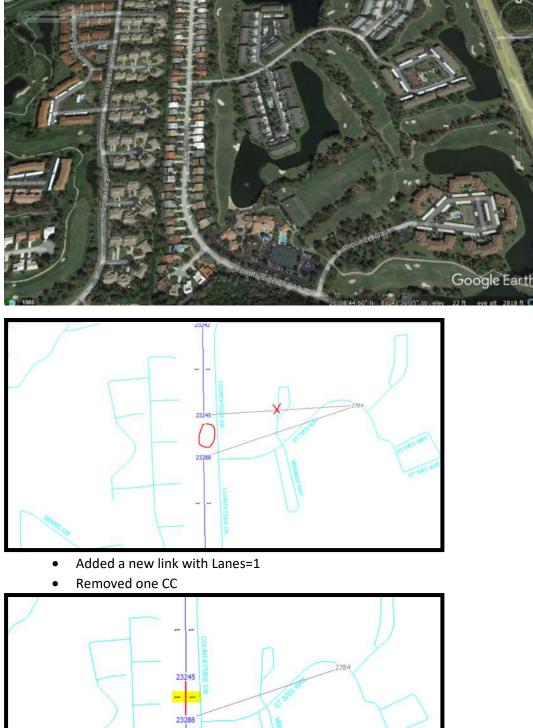


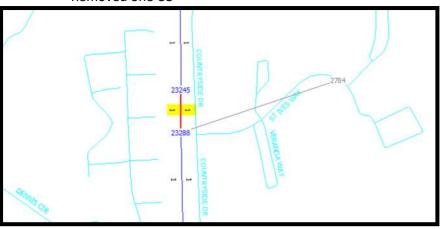
12. Glen Eagle Blvd SB, N of Davis Blvd



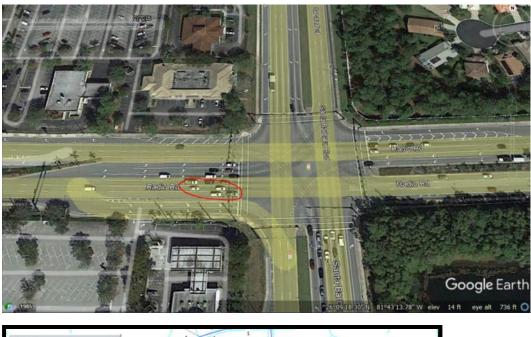


13. Glen Eagle Blvd EB & WB

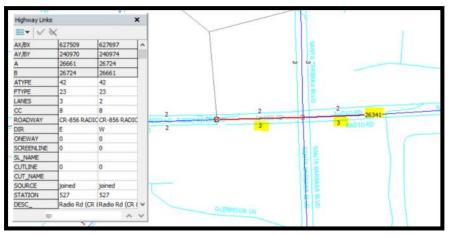



14. Glen Eagle Blvd around Dennies Cir

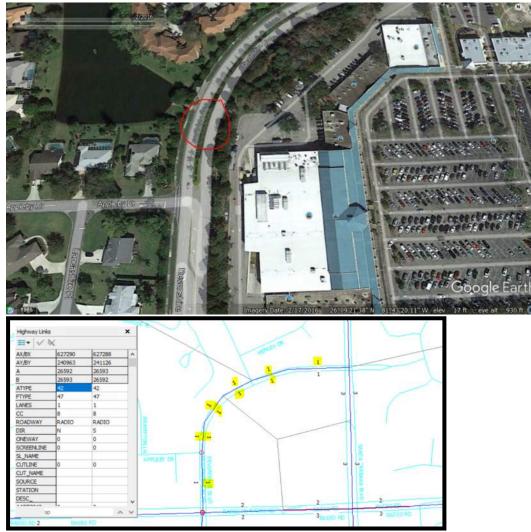
- Added a new link with Lanes=1
- Removed one CC

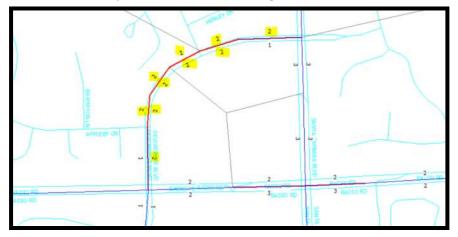


15. Countryside Dr at St Ives Way

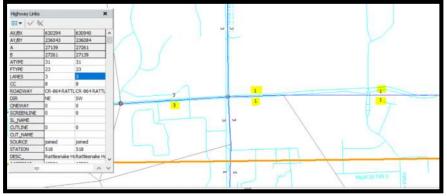


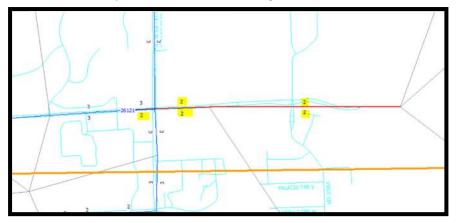
16. Radio Rd EB at Santa Barbara Blvd



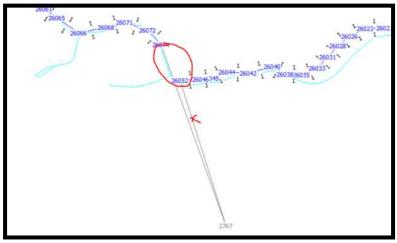


- Link update: Lanes=2 was changed to Lanes=3
- Split the link

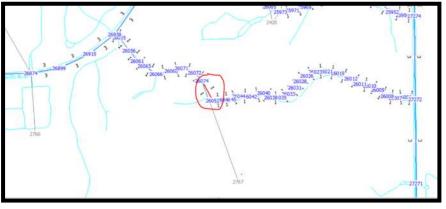

17. Devonshire Blvd, N of Radio Rd



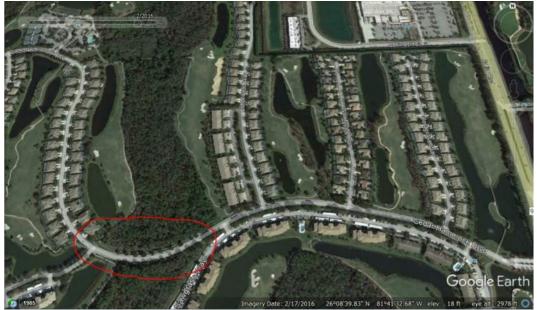
18. Rattlesnake Hammock Rd at Collier Blvd

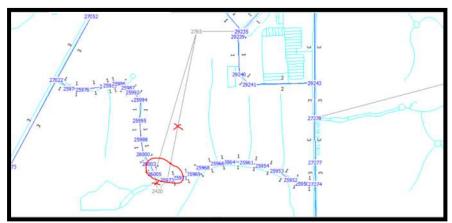


- Link update: Lanes=3 was changed to Lanes=2
- Split the link
- Link update: Lanes=1 was changed to Lanes=2

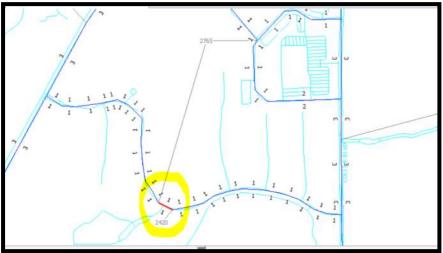


19. Naples Heritage Dr

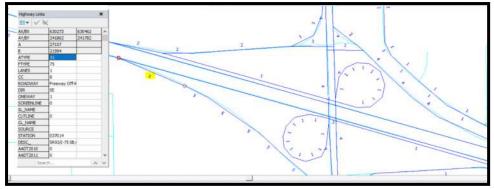


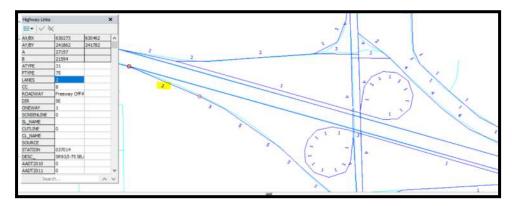


- Added a new link with Lanes=1
- Removed one CC

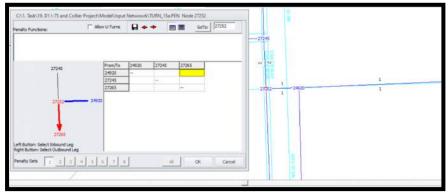


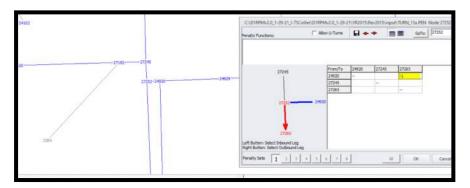
20. Cedar Hammock Blvd


- Added a new link with Lanes=1
- Removed two CCs

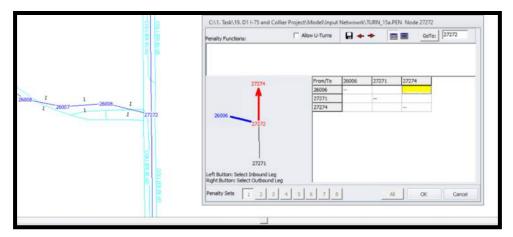

I-75 SB off-ramp to Collier Blvd SB (2045 network only)

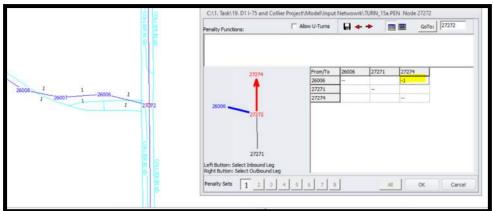
2019-12-phase-iir-traffic-operations-concept-plan.pdf (swflroads.com)


After (to match at least with the existing condition)

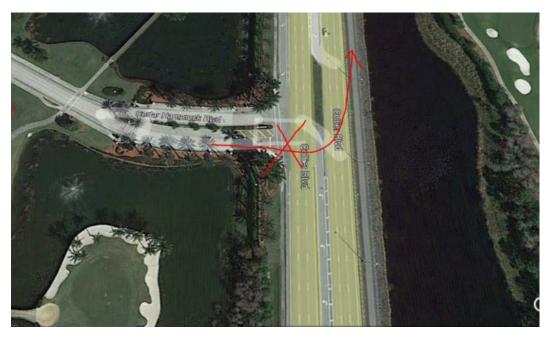

Turn Penalty Update

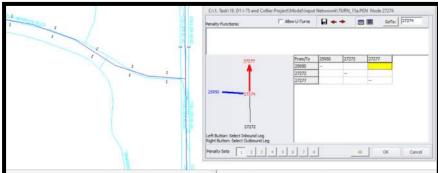
1. 25th Ave SW WB, W of Collier Blvd

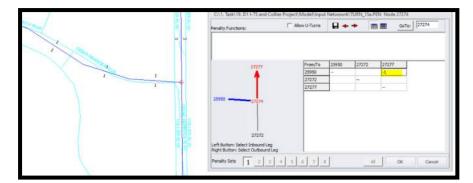




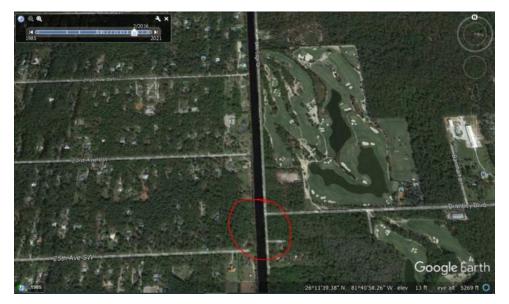
• 25th Ave SW cannot access the Collier Blvd SB

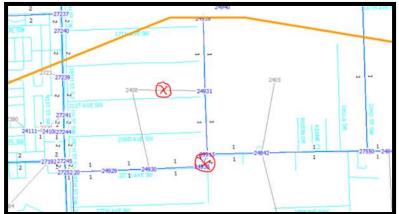


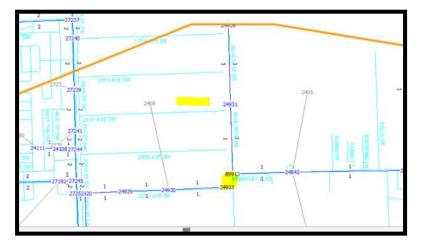

- Dr Naples Heritage Dr Naples Heritage Dr Naples Heritage dr 951 951
- 2. Naples Heritage Dr to Collier Blvd NB

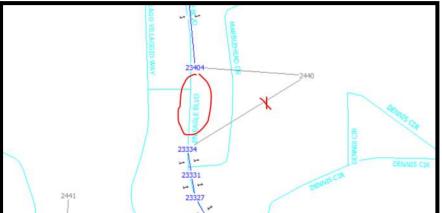


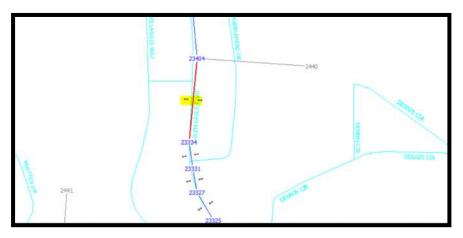
3. Cedar Hammock Blvd to Collier NB

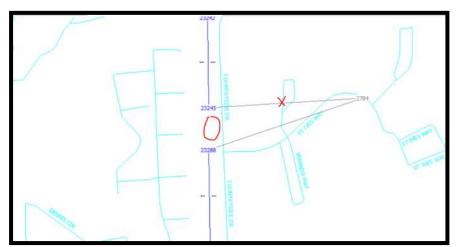

- 10 Sushess Ctr N Business Cir N Google Ear F Alon U-Turns GeTe a 1 OK ... m = GaTer naity Sets 1 2 3 4 3 5 7 8 at OK.
- 4. Business Cir N to Collier Blvd NB

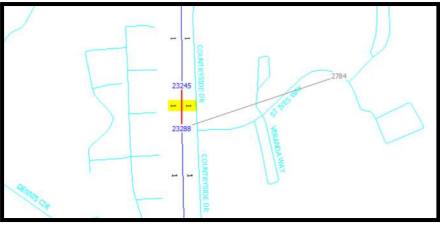

5. 6368 External

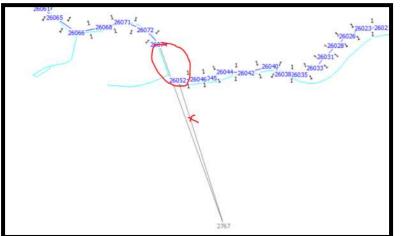

TAZ Centroid Connector Update

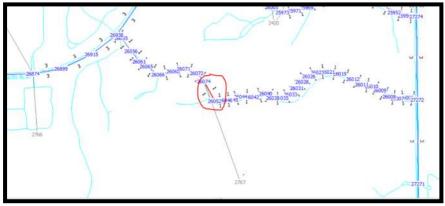

1. TAZ 2408: physical barrier - river



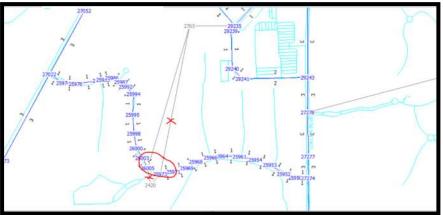

- 25th Ave SW should not be connected to Brantley Blvd (Deleted)
- TAZ 2048 cannot access Blue Sage Dr (Deleted)



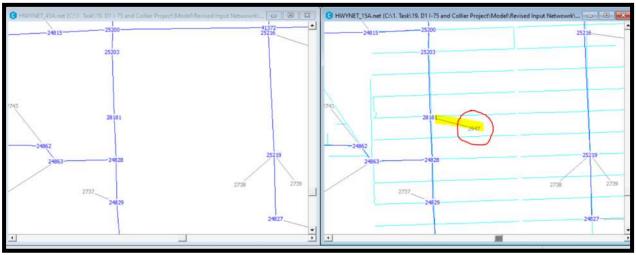

- Added a new link
- Removed one CC

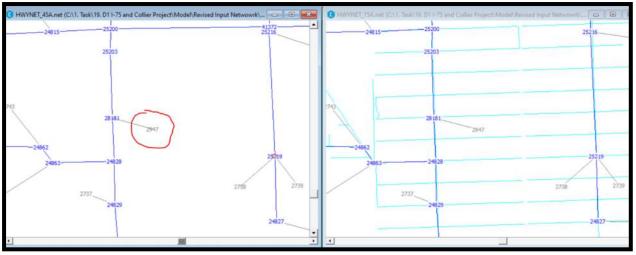


- Added a new link with Lanes=1
- Removed one CC

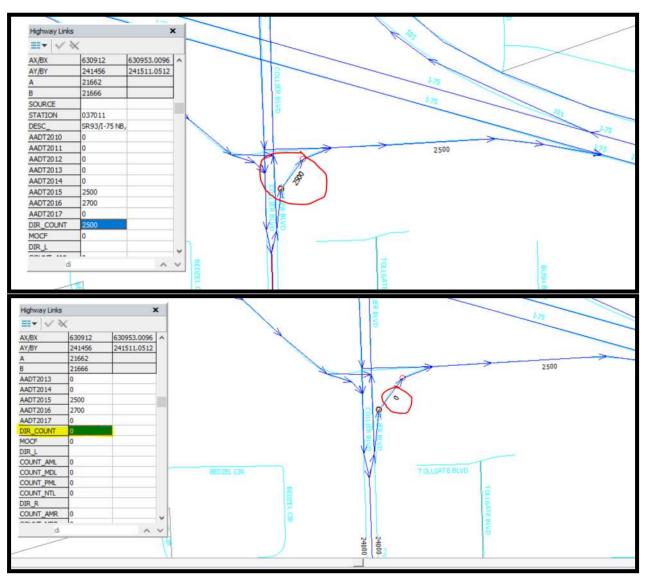


- Added a new link with Lanes=1
- Removed one CC


5. TAZ 2765 and TAZ 2420


- Added a new link with Lanes=1
- Removed two CCs

The Centroid node of 2947 was missing in the 2045 network. 2045 zonal data file has the data for this TAZ.



• Added the missing CC

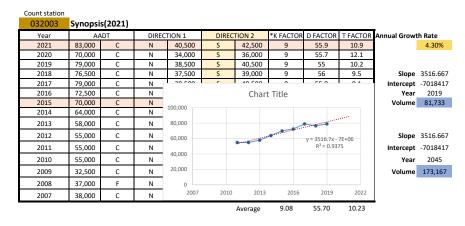
2015 Count Update

1. Remove the "Dir_Count" on the ramp.

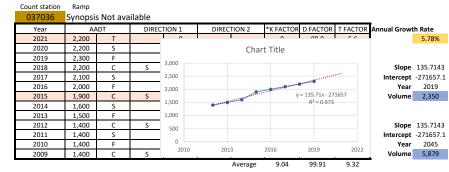
•

		As-is 20			Revised 2015					
		AS-15 20				Reviseu .				
	Volume	Count	Volume/ Count	No. of Links	Volume	Count	Volume/ Count	No. of Links		
12	4,077,062	3,895,149	1.05	98	4,093,785	3,895,149	1.05	98		
16	16,806	13,100	1.28	2	19,575	13,100	1.49	2		
21	628,634	542,160	1.16	60	627,683	542,160	1.16	60		
22	2,196,596	2,096,287	1.05	198	2,195,702	2,096,287	1.05	198		
23	12,401,336	13,245,821	0.94	917	12,419,770	13,259,041	0.94	919		
24	4,437,909	4,742,096	0.94	323	4,437,717	4,742,096	0.94	323		
25	2,030,193	2,210,537	0.92	170	2,043,172	2,210,537	0.92	170		
29	172,803	164,316	1.05	26	172,876	164,316	1.05	26		
31	609,949	585,800	1.04	128	614,998	585,800	1.05	128		
32	511,130	531,082	0.96	94	520,542	531,082	0.98	94		
33	227,345	308,499	0.74	43	230,557	308,499	0.75	43		
34	90,170	128,672	0.7	12	99,050	128,672	0.77	12		
35	1,358,568	1,435,604	0.95	386	1,355,805	1,435,604	0.94	386		
36	286,796	307,404	0.93	66	286,583	307,404	0.93	66		
37	95,026	141,892	0.67	30	98,315	141,892	0.69	30		
38	13,569	20,642	0.66	8	13,632	20,642	0.66	8		
39	101,029	125,530	0.8	42	101,110	125,530	0.81	42		
41	2,069,404	1,989,847	1.04	323	2,079,111	2,008,279	1.04	325		
42	1,192,857	1,245,762	0.96	316	1,189,951	1,245,762	0.96	316		
43	2,742,320	2,663,336	1.03	964	2,756,728	2,663,336	1.04	964		
44	507,552	504,440	1.01	173	505,833	504,440	1	173		
45	314,557	343,244	0.92	141	314,300	343,244	0.92	141		
46	1,163,974	1,147,232	1.01	645	1,166,541	1,147,232	1.02	645		
47	190,228	171,428	1.11	78	192,500	171,428	1.12	78		
48	24,152	48,386	0.5	20	25,720	48,386	0.53	20		
52	662,240	641,356	1.03	70	662,251	641,356	1.03	70		
61	78,605	78,500	1	6	78,529	78,500	1	6		
62	378,787	369,800	1.02	30	380,327	369,800	1.03	30		
63	121,352	126,300	0.96	9	123,864	126,300	0.98	9		
64	126,822	135,600	0.94	10	129,250	135,600	0.95	10		
65	62,442	60,100	1.04	7	57,254	60,100	0.95	7		
71	690,364	571,346	1.21	86	689,545	568,846	1.21	85		
72	124,992	130,900	0.95	15	127,164	130,900	0.97	15		
73	57,881	38,500	1.5	9	58,129	38,500	1.51	9		
75	640,972	534,200	1.2	69	645,061	534,200	1.21	69		
76	78,666	70,900	1.11	8	77,429	70,900	1.09	8		
77	64,895	41,600	1.56	9	64,518	41,600	1.55	9		
79	63,070	56,200	1.12	8	63,049	56,200	1.12	8		
92	38,097	43,626	0.87	4	38,110	43,626	0.87	4		
93	278,472	254,570	1.09	24	277,264	254,570	1.09	24		
97	62,713	51,450	1.22	24	62,607	51,450	1.22	24		
98	59,470	43,350	1.37	22	59,632	43,350	1.38	22		
99	147,533	116,400	1.27	9	147,979	116,400	1.27	9		
	41,197,338	41,972,964	0.98	5,682	41,303,518	42,002,116	0.98337	5,685		

D1RPM 2015 Volume to Count by Facility Type



I-75/SR 93 at SR 951/Collier Boulevard Interchange


Appendix H: Historical Trendline Analysis

Historic Trendline Analysis by FDOT Count Station

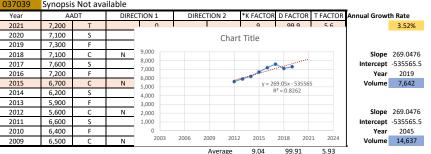
Count station			
032000	Synopsis	5(2021)	
Year	AA	DT	
2021	45,500	С	
2020	39,000	С	
2019	45,000	С	
2018	41,500	С	
2017	43,500	С	
2016	39,500	С	
2015	40,500	С	
2014	36,500	С	
2013	34,500	С	
2012	31,000	С	
2011	31,500	С	
2010	32,500	С	
2009	34,000	С	
2008	32,500	С	
2007	33,500	С	
2006	28,500	С	

Count station	Ramp	
037037	Synopsis	Not avail
Year	AA	DT
2021	19,000	Т
2020	19,000	S
2019	19,500	F
2018	19,000	С
2017	21,000	S
2016	20,000	F
2015	18,500	С
2014	15,000	S
2013	14,000	F
2012	13,500	С
2011	11,500	S
2010	11,000	F
2009	11,000	С

Year AADT DIRECTION 1 DIRECTION 2 *K FACTOR D FACTOR T FACTOR 2021 2,200 T 2020 2,200 S Chart Title 2019 2,300 F 3.000 2018 2,200 C N 2017 1,800 T 2,500 -2016 1,700 S 2,000 1,600 F 1,500 C N 1,500 2015

1.000

2010


Slope 142.8571 tercept -286204 Year 2019 y = 142.86x - 28620 Volume 2,225 $R^2 = 0.9368$ Slope 142.8571 tercept -286204 Year 2045 2016 2019 2022 Volume 5,939 9.04 99.91 9.18 Average

nual Growth Rate

6.42%

Count station Ramp 037039 Synopsis Not available Year AADT DIRECTION 1 0 2021 7,200 T 2020 7,100 S 2019 7,300 F Chart Title N 9,000 7,100 C 2018 8,000 2017 7,600 S _____ 7,000 2016 7.200 F N 6,000 2015 2014 6,700 С 5,000 6,200 S

2010

Count station Ramp

1,400

5,700

5,800

2012 1,300

2011 5,800

Count station Ramp

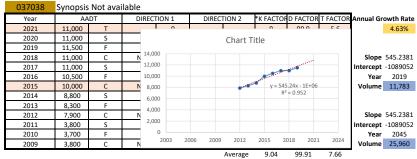
037035

2014

2013

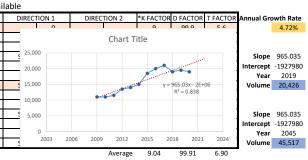
2010

2009

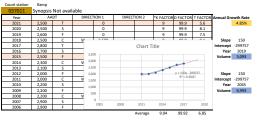

Synopsis Not available

F

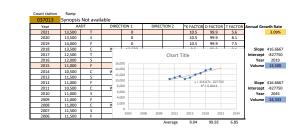
s


F C N

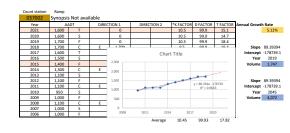
C N 500

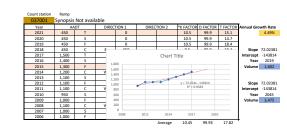

2013

DIREC	TION 1	DIREC	TION 2	*K FACTOR	D FACTOR	T FACTOR	Annual Gro	wth Rate
W	22,000	E	23,500	9	55.9	13.3		3.57%
W	19,000	E	20,000	9	55.7	14.2		
W	22,000	E	23,000	9	55	12		
W	20,500	E	21,000	9	56	12.2	Slope	1600
W	21,000	E	22,500	9	55.9	11.8	Intercept	-3185600
w	19.500	E	20.000	9	56.1	9.9	Year	2019
N			Chart T	itlo			Volume	44,800
N			Chart	luc				
N ^{60,0}	00							
N 50,0							Slope	1600
V 40,0	00					Intercept	-3185600	
N 30,0	00				y = 1600x - 3E R ² = 0.901		Year	2045
V 20,0	00				IX = 0.501		Volume	86,400
V 10,0	00							
v	0							
v	2009	2012	2015	201	18	2021		
			Average	9.06	55.46	12.48		



Historic Trendline Analysis by FDOT Count Station




030351	Hourly Co	ntinuous Co	unts repor	t is available							
Year	A	DT	DIREC	TION 1	DIRE	CTION 2	*K FACTOR	D FACTOR	T FACTOR	Annual Growt	h Rate
2021	26,851	С	N	13,780	S	13,071	10.5	55.2	12.4		2.85%
2020	20,830	С	N	10,623	S	10,207	10.5	57	14.2		
2019	26,404	С	N	13,180	S	13,224	10.5	53.3	11.6	1	
2018	24,970	С	E	10.101		10.000	~ *	20.0		Slope	738.7622
2017	24,968	С	E			Char	t Title			Intercept	-1465674
2016	24,597	С	E							Year	2019
2015	23,127	С	E	30,000						Volume	25,887
2014	21,320	С	E	25.000				Service and Services			
2013	20,221	С	E								
2012	19,444	С	E	20,000		and so the second s	γ.	738.76x - 1E+	6	Slope	738.7622
2011	19,204	С	E	15,000				R ^t = 0.9064		Intercept	-1465674
2010	19,484	С	E	10.000						Year	2045
2009	19,114	С	E							Volume	45,095
2008	19,033	С	E	5,000							
2007	21,141	С	E	_ ہ							
2006	22,029	С	E	2003	2006	2009 203	12 2015	2018 20	21 2024		
						Average	10.98	54.75	11.15		

I-75/SR 93 at SR 951/Collier Boulevard Interchange

Appendix I: Traffic Analysis Output Reports

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2025 RFP Traffic Analysis Output Reports

(AM Peak Hour)

HCS Basic Freeway Report

Project Information				
Analyst	Pevida Highway Designers	Date	11/28/2022	
Agency	Pevida Highway Designers	Analysis Year	2025	
Jurisdiction	D1	Time Analyzed	AM Peak Hour	
Project Description	RFP Alternative_EB Direction of Travel	Units	U.S. Customary	
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data		-		
Number of Lanes (N), In	3	Terrain Type	Level	
Segment Length (L), ft	13465	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors	·		•	
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	2797	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1041	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.43	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.8	
Total Ramp Density Adjustment	-	Level of Service (LOS)	В	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

	HCS Freewa	y Diverge Report				
Project Information						
Segment Number 2		Segment Name	SR 951 EB	Off Ramp		
Analysis Period Number 1		Segment Analysis Period	15			
Geometric Data		-				
		Freeway	Ramp			
Number of Lanes (N), In		3	2			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Deceleration Length	(LD), ft	1500	1500			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Side	ed Two-Lane		
Adjustment Factors		·				
Driver Population		All Familiar	All Familia	r		
Weather Type		Non-Severe Weather	Non-Seve	re Weather		
Incident Type		No Incident				
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAR	CAV	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000			
Demand and Capacity		•				
Demand Volume (Vi), veh/h		2797	1663			
Peak Hour Factor (PHF)		0.95	0.95			
Total Trucks, %		6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.943 0.966			
Flow Rate (vi), pc/h		3122	1812			
Capacity (cmd), pc/h		7200	4000			
Initial Adjusted Capacity (cmda), pc/h		7200	-			
Final Adjusted Capacity (cmda), pc/h		7200	4000			
Volume-to-Capacity Ratio (v/c)		0.43	0.45			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/l	n	720		
Downstream Equilibrium Distance (LEQ), f	-	Off-Ramp Influence Area Spee	ed (SR), mi/h	55.7		
Flow in Lanes 1 and 2 (v12), pc/h	2402	Outer Lanes Freeway Speed (S	50), mi/h	82.7		
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	60.2			
Number of Outer Lanes on Freeway (NO),	In 1	Average Density (D), pc/mi/ln	17.3			
Level of Service (LOS)	В	Density in Ramp Influence Are	a (DR), pc/mi/ln	11.4		

	HCS Basic Fre	eeway Report	
Project Information			
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5095	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1134	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	633
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.26
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.4
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Merge Report					
Project Information								
Segment Number 4			Segment Name	SR 951 EB	On Ramp			
Analysis Period Number 1			Segment Analysis Period 07:00-07:15					
Geometric Data								
			Freeway	Ramp				
Number of Lanes (N), In			2					
Free-Flow Speed (FFS), mi/h			75.4	35.0				
Segment Length (L) / Acceleration Leng	gth (LA), ft	:	1500	1260				
Terrain Type			Level	Level				
Percent Grade, %			-	-				
Segment Type / Ramp Type	Segment Type / Ramp Type				d One-Lane			
Adjustment Factors			•					
Driver Population			All Familiar	All Familia	r			
Weather Type			Non-Severe Weather	Non-Sever	e Weather			
Incident Type			No Incident					
Proportion of CAVs in Traffic Stream			0	-				
Final Speed Adjustment Factor (SAF)			1.000	1.000				
Demand Adjustment Factor (DAF)			1.000	1.000				
Capacity Adjustment Factor for CAVs, C	AFcav		1.000					
Final Capacity Adjustment Factor (CAF)			1.000					
Demand and Capacity				•				
Demand Volume (Vi), veh/h			1134	292				
Peak Hour Factor (PHF)			0.95	0.95				
Total Trucks, %			6.00					
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966				
Flow Rate (vi), pc/h			1266	318				
Capacity (cmd), pc/h			4800	2000				
Adjusted Capacity (cmda), pc/h			4800	2000				
Volume-to-Capacity Ratio (v/c)			0.33	0.16				
Speed and Density			•					
Upstream Equilibrium Distance (LEQ), ft -			Flow Outer Lanes (vOA), pc/h/ln		-			
Downstream Equilibrium Distance (LEQ), ft -			On-Ramp Influence Area Speed (S	SR), mi/h	67.0			
Flow in Lanes 1 and 2 (v12), pc/h	1	1266	Outer Lanes Freeway Speed (SO),	mi/h	75.4			
Flow Entering Ramp-Infl. Area (vR12), po	:/h 1	1584	Ramp Junction Speed (S), mi/h		67.0			
Number of Outer Lanes on Freeway (No	5), In C)	Average Density (D), pc/mi/ln	11.8				
Level of Service (LOS)	A	A	Density in Ramp Influence Area (D	DR), pc/mi/ln	9.9			

	HCS Basic F	reeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp to Everglades Blvd EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43780	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1426	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	796
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.33
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

RFP Alternative_EB.xuf

						hcs f	reeway	Facilit	ies R	epor	t							
Proje	ect In	form	ation															
Analys	t				Pevida I	Highway I	Designers	Date					11/28/	2022				
Agency	/				Pevida I	Highway I	Designers	Analysi	Analysis Year				2025					
Jurisdie	ction				D1			Time A	nalyzed				AM Peak Hour					
Facility	Name				I-75 Ma	inline		Units	Units U				U.S. Cı	ustomar	у			
Project	Descri	ption			RFP Alte	ernative_E	B Direction o	of Travel										
Facili	ity Gl	obal	Input	:														
Jam De	ensity, p	oc/mi/lı	n		190.0			Density	/ at Cap	acity, po	:/mi/ln	-	45.0					
Queue	Discha	arge Capacity Drop, % 7						Total S	egment	s			5					
Total A	nalysis	Period	s		1			Analysi	s Perioc	l Duratio	on, min		15					
Facility	Length	n, mi			12.38													
Facili	ity Se	egme	nt Da	ta														
No.		Cod	ed	Т	Analyze	d		Name			L	ength,	ft	Т	Lanes			
1		Bas	ic		Basic		R 886 SB (51 EB Off F		p to SR		13465			3				
2		Dive	rge		Diverge	2	SR	951 EB Of	f Ramp 1500			1500) 3					
3		Bas	ic		Basic		R 951 EB (51 EB On F		p to SR		5095			2				
4		Mer	ge		Merge		SR	951 EB Or	Ramp			1500			2			
5		Bas	ic		Basic				B On Ramp to 43780 EB Off Ramp					2				
Facili	ity Se	egme	nt Da	ta														
							Segme	nt 1: Ba	asic									
AP	Pł	łF	fŀ	IV	Flow (pc			Capacity d/c Speed Den (pc/h) Ratio (mi/h) (pc/n					LOS					
1	0.	95	0.9	943	31	22	72	00	0.	43	7	5.4		13	3.8	В		
							Segmen	t 2: Div	erge									
ΑΡ	Pł	łF	fŀ	IV	Flow (pc		Capa (pc			/c tio		eed i/h)		Den (pc/n	nsity ni/ln)	LOS		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	fl.	F	R Infl.			
1	0.95	0.95	0.943	0.966	3122	1812	7200	4000	0.43	0.45	60.2	55.7	7	17.3	11.4	В		
							Segme	nt 3: Ba	asic									
AP	Pł	łF	fŀ	IV	Flow (pc		Capa (pc			/c tio		eed ii/h)			nsity ni/ln)	LOS		
1	0.	95	0.9	943	12	66	48	00	0.	26	7	5.3		8	.4	A		
							Segmer	nt 4: Me	erge									
AP	Pł	łF	fŀ	IV	Flow (pc		Capacity (pc/h)						Speed (mi/h)				isity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	fl.	F	R Infl.			
1	0.95	0.95	0.943	0.966	1584	318	4800	2000	0.33	0.16	67.0	67.0)	11.8	9.9	A		

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

				Segment	5: Ba	sic					
AP	PHF	fHV	Flow Rate (pc/h)	Capacit (pc/h)	-		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.95	0.943	1592	4800		0.33	75.4			10.6	A
Fac	ility Analys	is Results									
AP	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay Co \$/AP	st	Speed mi/h	Density pc/mi/ln	Den veh/i		TT min	LOS
1	5592	5292	0.88	22.01	74.5		11.6	10	.9	10.00	В
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	74.5		Averag	e Density, ve	h/mi/ln	10.9)		
Average Travel Time, min 10.00					Average Density, pc/mi/ln				11.6		
Total VMT, veh-mi 5592					Total VHD, veh-h				0.88		
Vehio	cle Value of Tim	e (VOT), \$/h	25.00		Total D	elay Cost, \$		22.0)1		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_EB.xuf Generated: 01/31/2023 11:55:19

HCS Basic Freeway Report

Project Information					
Analyst	Pevida Highway Designers	Date	11/28/2022		
Agency	Pevida Highway Designers	Analysis Year	2025		
Jurisdiction	D1	Time Analyzed	AM Peak Hour		
Project Description	RFP Alternative_WB Direction of Travel	Units	U.S. Customary		
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data					
Number of Lanes (N), In	2	Terrain Type	Level		
Segment Length (L), ft	43840	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors	·	•			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	962	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	537		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22		
Speed and Density		•	1		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	7.1		
Total Ramp Density Adjustment	-	Level of Service (LOS)	A		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

		HCS Freeway	Diverge Report				
Project Information							
Segment Number	2		Segment Name	SR 951 WE	B Off Ramp		
Analysis Period Number	1		Segment Analysis Period	07:00-07:1	5		
Geometric Data							
			Freeway	Ramp			
Number of Lanes (N), In			2	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Deceleration L	.ength (LD)	, ft	1500	250			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors				•			
Driver Population			All Familiar	All Familia			
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident				
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF))		1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAV	s, CAFCAV		1.000	-			
Final Capacity Adjustment Factor (CA	AF)		1.000				
Demand and Capacity							
Demand Volume (Vi), veh/h			962	230			
Peak Hour Factor (PHF)			0.95	0.95			
Total Trucks, %			6.00				
Heavy Vehicle Adjustment Factor (fH	IV)		0.943				
Flow Rate (vi), pc/h			1074				
Capacity (cmd), pc/h			4800				
Initial Adjusted Capacity (cmda), pc/h	า		4800	-			
Final Adjusted Capacity (cmda), pc/h			4800	4800 2000			
Volume-to-Capacity Ratio (v/c)			0.22	0.13			
Speed and Density							
Upstream Equilibrium Distance (LEQ)), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-		
Downstream Equilibrium Distance (L	EQ), ft	-	Off-Ramp Influence Area Speed	(SR), mi/h	60.3		
Flow in Lanes 1 and 2 (v12), pc/h		1074	Outer Lanes Freeway Speed (SO)), mi/h	82.7		
Flow Entering Ramp-Infl. Area (vR12)), pc/h	-	Ramp Junction Speed (S), mi/h	60.3			
Number of Outer Lanes on Freeway	(No), In	0	Average Density (D), pc/mi/ln 8.9				
Level of Service (LOS)		В	Density in Ramp Influence Area	(DR), pc/mi/ln	11.2		

	HCS Basic Fr	eeway Report			
Project Information					
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data					
Number of Lanes (N), In	2	Terrain Type	Level		
Segment Length (L), ft	2850	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors					
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	732	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	408		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.17		
Speed and Density					
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.0		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	5.4		
Total Ramp Density Adjustment	-	Level of Service (LOS)	A		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

	HCS Bas	ic Freeway Report					
Project Information							
Segment Number 4		Segment Name		SR 951 WB On Ramp Loop			
Analysis Period Number 1		Segment Analysis Period	(07:00-07:15			
Geometric Data		i					
		Freeway	Ramp				
Number of Lanes (N), In		3	1				
Free-Flow Speed (FFS), mi/h		75.4	35.0				
Segment Length (L) / Acceleration Length (L	A), ft	980	800				
Terrain Type		Level	Level				
Percent Grade, %		-	-				
Segment Type / Ramp Type		Freeway	Right-S	ided One-Lane			
Adjustment Factors							
Driver Population		All Familiar	All Fam	iliar			
Weather Type		Non-Severe Weather	Non-Severe Weather Non-Se				
Incident Type		No Incident	-				
Proportion of CAVs in Traffic Stream		0	-				
Final Speed Adjustment Factor (SAF)		1.000	1.000				
Demand Adjustment Factor (DAF)		1.000	1.000				
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-				
Final Capacity Adjustment Factor (CAF)		1.000	1.000				
Demand and Capacity							
Demand Volume (Vi), veh/h		732	634				
Peak Hour Factor (PHF)		0.95	0.95				
Total Trucks, %		6.00	6.00 3.50				
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.943 0.966				
Flow Rate (vi), pc/h		817	817 691				
Capacity (cmd), pc/h		7200	2000				
Adjusted Capacity (cmda), pc/h		7200	2000 2000				
Volume-to-Capacity Ratio (v/c)		0.21	0.21 0.35				
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	c/h/ln	0			
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4			
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0			
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	Ramp Junction Speed (S), mi/h				
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/m	Average Density (D), pc/mi/ln				
Level of Service (LOS)	A	Density in Ramp Influence	Density in Ramp Influence Area (DR), pc/mi/ln 6.7				

		HCS Freeway	Merge Report				
Project Information							
Segment Number 5			Segment Name	SR 951 WE	3 On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data			1				
			Freeway	Ramp			
Number of Lanes (N), In			3	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Acceleration Leng	gth (LA), f	ft	1500	1250			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors			1				
Driver Population			All Familiar	All Familia	-		
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident				
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF)			1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAVs, C	CAFCAV		1.000				
Final Capacity Adjustment Factor (CAF)			1.000				
Demand and Capacity			^				
Demand Volume (Vi), veh/h			1366	832			
Peak Hour Factor (PHF)			0.95				
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966			
Flow Rate (vi), pc/h			1525				
Capacity (cmd), pc/h			7200	2000			
Adjusted Capacity (cmda), pc/h			7200	2000			
Volume-to-Capacity Ratio (v/c)			0.34 0.45				
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	t	-	Flow Outer Lanes (vOA), pc/h/ln		592		
Downstream Equilibrium Distance (LEQ)), ft	-	On-Ramp Influence Area Speed (SR), mi/h	66.8		
Flow in Lanes 1 and 2 (v12), pc/h		933	Outer Lanes Freeway Speed (SO),	mi/h	75.1		
Flow Entering Ramp-Infl. Area (vR12), po	c/h	1840	Ramp Junction Speed (S), mi/h	68.6			
Number of Outer Lanes on Freeway (No	0), In	1	Average Density (D), pc/mi/ln	11.8			
Level of Service (LOS)		В	Density in Ramp Influence Area (I	DR), pc/mi/ln	11.6		

	HCS Basic F	Freeway Report			
Project Information					
Segment Number	6	Segment Name	I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data					
Number of Lanes (N), In	3	Terrain Type	Level		
Segment Length (L), ft	12185	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors					
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	2198	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	818		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.34		
Speed and Density					
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.8		
Total Ramp Density Adjustment	-	Level of Service (LOS)	A		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

RFP Alternative_WB.xuf

						HCS F	reeway	Facilit	ies R	epor	t						
Proje	ect In	form	ation														
Analys	t				Pevida H	lighway [Designers	Date					11/28/2022				
Agency	y				Pevida ł	lighway [Designers	Analysi	s Year				2025				
Jurisdi	ction				D1			Time A	nalyzed				AM Pea	ak Hou	r		
Facility	Name				I-75 Ma	inline		Units					U.S. Cu	stoma	ry		
Project	t Descri	ption			RFP Alte	ernative_V	VB Direction	of Travel									
Facil	ity Gl	obal	Input	:													
Jam De	ensity, J	oc/mi/l	n		190.0			Density	/ at Cap	acity, po	c/mi/ln	·	45.0				
Queue	Discha	arge Ca	pacity D	rop, %	7			Total S	egment	S			6				
Total A	nalysis	Period	s		1			Analysi	s Perioc	l Durati	on, min		15				
Facility	Lengtl	n, mi			11.90												
Facil	ity Se	egme	nt Da	ta													
No.		Cod	ed		Analyze	d		Name			L	Length,	ft	Τ	Lanes		
1		Bas	ic		Basic		I-75 from Ramp to	Everglade SR 951 W				43840		2			
2		Dive	rge		Diverge		SR S	951 WB Of	f Ramp			1500			2		
3		Bas	sic		Basic		I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop					2850			2		
4		Mer	ge		Basic		SR 951	WB On R	amp Lo	ор		980			3		
5		Mer	ge		Merge		SR 951 WB On Ramp					1500			3		
6		Bas	ic		Basic			951 WB On Ramp to CR NB Off Ramp				12185			3		
Facil	ity Se	egme	nt Da	ta													
							Segme	nt 1: Ba	asic								
АР	PI	HF	fŀ	łV	Flow (pc,		Capa (pc,			/c tio		peed ni/h)				LOS	
1	0.	95	0.9	943	10	74	480	00	0.22 75.4				7.1 A			A	
							Segmen	t 2: Div	erge								
АР	PI	HF	fŀ	łV	Flow (pc,		Capa (pc,			/c tio		Speed (mi/h)			Density (pc/mi/ln)		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	fl.	F	R Infl.		
1	0.95	0.95	0.943	0.966	1074	251	4800	2000	0.22	0.13	60.3	60.3	3	8.9	11.2	В	
							Segme	nt 3: Ba	asic								
ΑΡ	PI	HF	fŀ	IV	Flow (pc		Capa (pc,			/c tio		Speed (mi/h)			nsity ni/ln)	LOS	
1	0.	95	0.9	943	81	7	480	00	0.	17	7	75.0		5	.4	A	
							Segmer	nt 4: Me	erge								
АР	PI	HF	fŀ	IV	Flow (pc		Capa (pc,			/c tio		peed ni/h)	Density (pc/mi/ln)			LOS	
					(194)	,		-			•	-		Q/ -	,,	1	

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

Jouoig		pc 1D. 02	-022/11	01014	01 3-401 D-3	00120000	110										
1	0.95	0.95	0.943	0.966	1508	691	7200	2000	0.21	0.35	75.4	75.4	6.7	6.7	A		
							Segmer	nt 5: M	erge								
АР	P	PHF fHV		Flow (pc,		Capa (pc,			/c tio		eed i/h)		Density c/mi/ln)	LOS			
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	. F	R Infl.			
1	0.95	0.95	0.943	0.966	2432	907	7200	2000	0.34	0.45	68.6	66.8	11.8	11.6	В		
							Segme	nt 6: B	asic								
АР	P	HF	fŀ	IV	Flow (pc,		Capa (pc,			/c tio		Speed (mi/h)				Density c/mi/ln)	LOS
1	0.	0.95 0.943		943	24	54	7200		0.34		75.4			10.8			
Faci	lity A	nalysi	is Res	ults													
AP	VM [.] veh-m	-		Deman -mi/AP		HD -h/AP	Total Delay \$/AP		Speed mi/h		Density pc/mi/ln		ensity n/mi/ln	TT min	LOS		
1	384	2	3	3563	0	.46	11.54		74.7		8.2		7.7	9.60	А		
Faci	lity O	verall	Resu	lts													
Space Mean Speed, mi/h 74.7 Average Density, veh/mi/ln								7	7.7								
Avera	ige Trave	el Time,	min		9.60			Averag	Average Density, pc/mi/ln 8.2								
Total	VMT, ve	h-mi			3842			Total V	Total VHD, veh-h 0.46								
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		1	1.54				
		2			ights Posonyo	al			2022				Canan	tod: 01/21/20	22.14.00.4		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_WB.xuf Generated: 01/31/2023 14:09:45

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2025 RFP Traffic Analysis Output Reports

(PM Peak Hour)

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2025
Jurisdiction	D1	Time Analyzed	PM Peak Hour
Project Description	RFP Alternative_EB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		·	
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	13465	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·	• •	·
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2198	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	818
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.34
Speed and Density			·
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.8
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	ŀ	ICS Freeway I	Diverge Report				
Project Information							
Segment Number 2			Segment Name		SR 951 EB	Off Ramp	
Analysis Period Number 1			Segment Analysis Period		07:00-07:1	5	
Geometric Data			-				
			Freeway		Ramp		
Number of Lanes (N), In			3		2		
Free-Flow Speed (FFS), mi/h			75.4		35.0		
Segment Length (L) / Deceleration Leng	th (LD), ft	t	1500		1500		
Terrain Type			Level		Level		
Percent Grade, %			-		-		
Segment Type / Ramp Type			Freeway		Right-Side	d Two-Lane	
Adjustment Factors							
Driver Population			All Familiar		All Familiar		
Weather Type			Non-Severe Weather		Non-Sever	e Weather	
Incident Type			No Incident		-		
Proportion of CAVs in Traffic Stream			0		-		
Final Speed Adjustment Factor (SAF)			1.000		1.000		
Demand Adjustment Factor (DAF)			1.000		1.000		
Capacity Adjustment Factor for CAVs, CA	AFCAV		1.000		-		
Final Capacity Adjustment Factor (CAF)			1.000		1.000		
Demand and Capacity							
Demand Volume (Vi), veh/h			2198		1307		
Peak Hour Factor (PHF)			0.95		0.95		
Total Trucks, %			6.00		3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943		0.966		
Flow Rate (vi), pc/h			2454		1424		
Capacity (cmd), pc/h			7200		4000		
Initial Adjusted Capacity (cmda), pc/h			7200		-		
Final Adjusted Capacity (cmda), pc/h			7200		4000		
Volume-to-Capacity Ratio (v/c)			0.34		0.36		
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	-	-	Flow Outer Lanes (vOA), pc,	/h/ln		566	
Downstream Equilibrium Distance (LEQ),	ft -	-	Off-Ramp Influence Area S	peed (SF	R), mi/h	56.8	
Flow in Lanes 1 and 2 (v12), pc/h	1	1888	Outer Lanes Freeway Spee	d (SO), m	ni/h	82.7	
Flow Entering Ramp-Infl. Area (vR12), pc	/h -	-	Ramp Junction Speed (S), r	mi/h		61.2	
Number of Outer Lanes on Freeway (NC), In 1	1	Average Density (D), pc/mi	i/ln		13.4	
Level of Service (LOS)	A	4	Density in Ramp Influence	Area (DF	R), pc/mi/ln	7.0	

HCS Basic Freeway Report								
Project Information								
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	2	Terrain Type	Level					
Segment Length (L), ft	5095	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.33					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	891	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	498					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.21					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.3					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.6					
Total Ramp Density Adjustment	-	Level of Service (LOS)	A					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

		HCS Freeway	Merge Report				
Project Information							
Segment Number 4			Segment Name	SR 951 EB	On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data							
			Freeway	Ramp			
Number of Lanes (N), In			2	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Acceleration Len	igth (LA), f	ft	1500	1260			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors			•				
Driver Population			All Familiar	All Familia			
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident	-			
Proportion of CAVs in Traffic Stream			0	-	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-			
Final Capacity Adjustment Factor (CAF))		1.000	1.000	1.000		
Demand and Capacity			•				
Demand Volume (Vi), veh/h			891	230			
Peak Hour Factor (PHF)			0.95	0.95			
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)	1		0.943	0.966			
Flow Rate (vi), pc/h			995	251			
Capacity (cmd), pc/h			4800	2000			
Adjusted Capacity (cmda), pc/h			4800	2000			
Volume-to-Capacity Ratio (v/c)			0.26	0.13			
Speed and Density							
Upstream Equilibrium Distance (LEQ), f	ft	-	Flow Outer Lanes (vOA), pc/h/ln		-		
Downstream Equilibrium Distance (LEC	2), ft	-	On-Ramp Influence Area Speed ((SR), mi/h	67.2		
Flow in Lanes 1 and 2 (v12), pc/h		995	Outer Lanes Freeway Speed (SO),	mi/h	75.4		
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	1246	Ramp Junction Speed (S), mi/h		67.2		
Number of Outer Lanes on Freeway (N	lO), In	0	Average Density (D), pc/mi/ln		9.3		
Level of Service (LOS)		A	Density in Ramp Influence Area (DR), pc/mi/ln	7.3		

	HCS Basic F	reeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp to Everglades Blvd EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43780	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1121	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	626
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.26
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.3
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

RFP Alternative_EB.xuf

					l	HCS F	reeway	Facilit	ies R	epor	t					
Proje	ect In	form	ation													
Analys	t				Pevida ł	Highway I	Designers	Date				•	11/28/2	022		
Agency	y				Pevida H	lighway I	Designers	Analysi	s Year			Ĩ	2025			
Jurisdie	ction				D1			Time A	nalyzed			F	PM Peak Hour			
Facility	Name				I-75 Ma	inline		Units				l	J.S. Cus	tomar	у	
Project	t Descri	ption			RFP Alte	ernative_E	B Direction o	of Travel								
Facil	ity Gl	obal	Input	:												
Jam De	ensity, J	oc/mi/l	n		190.0			Density	/ at Cap	acity, po	:/mi/ln	4	45.0			
Queue	Discha	rge Ca	pacity D	rop, %	7			Total S	egment	s		Ľ	5			
Total A	nalysis	Period	s		1			Analysi	s Perioc	Duratio	on, min	·	15			
Facility	Lengtł	n, mi			12.38											
Facil	ity Se	egme	nt Da	ta												
No.		Cod	ed	Т	Analyze	d		Name			L	ength, i	ft		Lanes	
1		Bas	ic		Basic		1-75 From C 95	R 886 SB (51 EB Off F		p to SR		13465			3	
2		Dive	rge		Diverge		SR	951 EB Of	f Ramp			1500	3			
3		Bas	ic		Basic		I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp				5095	5 2				
4		Mer	ge		Merge		SR 951 EB On Ramp 150				1500			2		
5		Bas	ic		Basic		l-75 From Everglad	SR 951 EE des Blvd E	8 On Ra B Off Ra	mp to Imp		43780) 2			
Facil	ity Se	egme	nt Da	ta												
							Segme	nt 1: Ba	asic							
AP	PI	łF	fŀ	IV	Flow (pc		Capa (pc,			/c tio		eed i/h)			isity ni/ln)	LOS
1	0.	95	0.9	43	24	54	720	00	0.	34	7	5.4		10).8	A
							Segmen	t 2: Div	erge							
AP	PI	łF	fŀ	iv	Flow (pc		Capa (pc,			/c tio		eed ii/h)			isity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	I.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2454	1424	7200	4000	0.34	0.36	61.2	56.8	1	3.4	7.0	A
							Segme	nt 3: Ba	asic							
AP	PI	łF	fŀ	IV	Flow (pc,		Capa (pc,						LOS			
1	0.	95	0.9	43	99	95	480	00	0.	21	7	5.3		6	.6	A
							Segmer	nt 4: Me	erge							
АР	PI	łF	fŀ	IV	Flow (pc,		Capa (pc,			/c tio		eed ii/h)			isity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	1.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1246	251	4800	2000	0.26	0.13	67.2	67.2		9.3	7.3	Α

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

	Segment 5: Basic										
AP	PHF	fHV	Flow Rate (pc/h)	Capacit (pc/h)		d/c Ratio	Spee (mi/h			Density c/mi/ln)	LOS
1	0.95	0.943	1251	4800		0.26	75.4			8.3	A
Fac	ility Analys	is Results									
AP	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay Co \$/AP	st	Speed mi/h	Density pc/mi/ln	Den veh/r		TT min	LOS
1	4395	4159	0.64	16.09		74.6	9.1	8.	5	10.00	А
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	74.6		Averag	e Density, ve	h/mi/ln	8.5			
Average Travel Time, min 10.00 Average Density, pc/mi/ln 9.						9.1					
Total VMT, veh-mi 4395 Total VHD, veh-h 0.64											
Vehi	cle Value of Tim	e (VOT), \$/h	25.00		Total D	elay Cost, \$		16.0)9		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_EB.xuf Generated: 01/31/2023 12:02:21

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2025
Jurisdiction	D1	Time Analyzed	PM Peak Hour
Project Description	RFP Alternative_WB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	•	• •	·
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1225	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	684
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.28
Speed and Density	·		·
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Freeway	Diverge Report			
Project Information					
Segment Number 2		Segment Name	SR 951 WE	3 Off Ramp	
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5	
Geometric Data		-			
		Freeway	Ramp		
Number of Lanes (N), In		2	1		
Free-Flow Speed (FFS), mi/h		75.4	35.0		
Segment Length (L) / Deceleration Length (L	D), ft	1500	250		
Terrain Type		Level	Level		
Percent Grade, %		-	-		
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane	
Adjustment Factors		-			
Driver Population		All Familiar	All Familia		
Weather Type		Non-Severe Weather	Non-Sever	e Weather	
Incident Type		No Incident	-		
Proportion of CAVs in Traffic Stream		0	-		
Final Speed Adjustment Factor (SAF)		1.000	1.000		
Demand Adjustment Factor (DAF)		1.000	1.000		
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-		
Final Capacity Adjustment Factor (CAF)		1.000	1.000		
Demand and Capacity					
Demand Volume (Vi), veh/h		1225	292		
Peak Hour Factor (PHF)		0.95	0.95		
Total Trucks, %		6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966		
Flow Rate (vi), pc/h		1367	318		
Capacity (cmd), pc/h		4800	2000		
Initial Adjusted Capacity (cmda), pc/h		4800	-		
Final Adjusted Capacity (cmda), pc/h		4800	2000		
Volume-to-Capacity Ratio (v/c)		0.28	0.16		
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-	
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.1	
Flow in Lanes 1 and 2 (v12), pc/h	1367	Outer Lanes Freeway Speed (SO),	mi/h	82.7	
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		60.1	
Number of Outer Lanes on Freeway (NO), In	0	Average Density (D), pc/mi/ln		11.4	
Level of Service (LOS)	В	Density in Ramp Influence Area (I	DR), pc/mi/ln	13.8	

	HCS Basic Fr	eeway Report						
Project Information								
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	2	Terrain Type	Level					
Segment Length (L), ft	2850	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	933	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	520					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.9					
Total Ramp Density Adjustment	-	Level of Service (LOS)	A					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

	HCS Bas	ic Freeway Report		
Project Information				
Segment Number 4		Segment Name	5	SR 951 WB On Ramp Loop
Analysis Period Number 1		Segment Analysis Period	()7:00-07:15
Geometric Data		·		
		Freeway	Ramp	
Number of Lanes (N), In		3	1	
Free-Flow Speed (FFS), mi/h		75.4	35.0	
Segment Length (L) / Acceleration Length (L	4), ft	980	800	
Terrain Type		Level	Level	
Percent Grade, %		-	-	
Segment Type / Ramp Type		Freeway	Right-Si	ded One-Lane
Adjustment Factors		·		
Driver Population		All Familiar	All Fami	liar
Weather Type		Non-Severe Weather	Non-Se	vere Weather
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		933	806	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, %		6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	
Flow Rate (vi), pc/h		1041	878	
Capacity (cmd), pc/h		7200	2000	
Adjusted Capacity (cmda), pc/h		7200	2000	
Volume-to-Capacity Ratio (v/c)		0.27	0.44	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	c/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	mi/h	75.4
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/m	ni/ln	8.5
Level of Service (LOS)	A	Density in Ramp Influence	e Area (DR), pc/mi/	ʻln 8.5

		HCS Freeway	Merge Report		
Project Information					
Segment Number 5			Segment Name	SR 951 WE	3 On Ramp
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5
Geometric Data					
			Freeway	Ramp	
Number of Lanes (N), In			3	1	
Free-Flow Speed (FFS), mi/h			75.4	35.0	
Segment Length (L) / Acceleration Leng	gth (LA), ft	:	1500	1250	
Terrain Type			Level	Level	
Percent Grade, %			-	-	
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane
Adjustment Factors			1		
Driver Population			All Familiar	All Familia	r
Weather Type			Non-Severe Weather	Non-Sever	e Weather
Incident Type			No Incident	-	
Proportion of CAVs in Traffic Stream			0	-	
Final Speed Adjustment Factor (SAF)			1.000	1.000	
Demand Adjustment Factor (DAF)			1.000	1.000	
Capacity Adjustment Factor for CAVs, C	AFcav		1.000	-	
Final Capacity Adjustment Factor (CAF)			1.000	1.000	
Demand and Capacity			-	-	
Demand Volume (Vi), veh/h			1739	1058	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, %			6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966	
Flow Rate (vi), pc/h			1941	1153	
Capacity (cmd), pc/h			7200	2000	
Adjusted Capacity (cmda), pc/h			7200	2000	
Volume-to-Capacity Ratio (v/c)			0.43	0.58	
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	-		Flow Outer Lanes (vOA), pc/h/ln		753
Downstream Equilibrium Distance (LEQ)	, ft -		On-Ramp Influence Area Speed (S	SR), mi/h	66.2
Flow in Lanes 1 and 2 (v12), pc/h	1	1188	Outer Lanes Freeway Speed (SO), r	mi/h	74.5
Flow Entering Ramp-Infl. Area (vR12), po	c/h 2	2341	Ramp Junction Speed (S), mi/h		68.0
Number of Outer Lanes on Freeway (No	5), In 1	1	Average Density (D), pc/mi/ln		15.2
Level of Service (LOS)	E	3	Density in Ramp Influence Area (D	R), pc/mi/ln	15.4

	HCS Basic F	reeway Report	
Project Information			
Segment Number	6	Segment Name	I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	12185	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2797	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1041
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.43
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.8
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

RFP Alternative_WB.xuf

HCS Freeway Facilities Report

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	i.	F	R Infl.	
АР	PI	HF	fł	łV	Flow (pc,		Capa (pc,	city	d	/c tio		eed ii/h)			isity ni/ln)	LOS
							Segmer		<u> </u>							
1	0.	95	0.9	943	(pc)		480	-	ка 0.1		-	4.9			.9	A
АР	PI	HF	fł	łV	Flow (pc)		Capa (pc)			/c tio		eed ii/h)			isity ni/ln)	LOS
							Segme	nt 3: Ba	asic							
1	0.95	0.95	0.943		1367	318	4800	2000	0.28	0.16	60.1	60.1		11.4	13.8	В
	F	R	F	R	(pc) Freeway	/h) Ramp	(pc,		Ra F	tio R	(m	ni/h) R Inf		(pc/r F	ni/ĺn) R Infl.	
AP	PI	HF	fł	١V	Flow	Rate	Segmen Capa			/c	Sp	eed	-	Der	sity	LOS
1	0.	95	0.9	943	13	67	480		0.	28	7	5.4		9	.1	A
АР	PI	HF	fł	łV	Flow (pc,		Capa (pc,			/c tio		eed ii/h)			isity ni/ln)	LOS
							Segme	nt 1: Ba	asic							
Facil	ity Se	egme	nt Da	ta												
6		Bas	sic		Basic		I-75 from SF 88	8 951 WB 0 6 NB Off F		p to CR		12185	5 3			
5		Mer	ge		Merge		SR 9	951 WB Or	n Ramp			1500			3	
4		Mer	ge		Basic			WB On R				980			3	
3		Bas	sic		Basic			75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop 2				2850			2	
2		Dive	rge		Diverge		SR 9	951 WB Of	1 WB Off Ramp 1				1500 2		2	
1		Bas	sic		Basic		Everglade: SR 951 W				43840			2		
No.	T	Cod	ed	Т	Analyze	d		Name			L	ength, t	ft	Τ	Lanes	
Facil	ity Se	egme	nt Da	ta												
Facility Length, mi 11.90										- ,		-				
	Analysis	-		/iop, //	1			_	-	S I Duratio	on, min		15			
	ensity, J		n pacity D)rop 0/	190.0 7				v at Cap	acity, po	c/mi/ln		45.0 6			
	•		Input	:												
	t Descri	-			RFP Alte	ernative_V	VB Direction	of Travel								
	/ Name				I-75 Ma			Units				l	U.S. Cu	stomai	у	
Jurisdi	ction				D1			Time A	Time Analyzed				PM Pea	k Hou		
Agenc					_		Designers	Analysi	s Year				2025			
Analys					Pevida H	- Highway I	Designers	Date				·	11/28/2	2022		
Proj	ect In	form	ation													
							reeway	raciiit		epoi	ι					

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

Jouolyi		pc 1D. 02	-522AI 1	-01 07-4	51 9-ACTD-3	55720000	110									
1	0.95	0.95	0.943	0.966	1919	878	7200	2000	0.27	0.44	75.4	75.4	8.5	8.5	Α	
			<u> </u>				Segmer	nt 5: Mo	erge							
AP	P	HF	fŀ	IV	Flow (pc,			Capacity d/c (pc/h) Ratio			Speed (mi/h)		Density (pc/mi/ln)		LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl	. F	R Infl		
1	0.95	0.95	0.943	0.966	3094	1153	7200	2000	0.43	0.58	68.0	66.2	15.2	15.4	В	
			<u> </u>				Segme	nt 6: Ba	asic							
АР	P PHF fHV		Flow (pc		Capacity (pc/h)					Speed (mi/h)		Density (pc/mi/ln)				
1	1 0.95 0.943		31	22	7200		0.43		75.4			13.8				
Faci	lity A	nalysi	is Res	ults												
AP	VM [.] veh-m	-		Deman -mi/AP		HD -h/AP	Total Delay Cost \$/AP		Speed mi/h		Density pc/mi/ln		ensity n/mi/ln	TT min	LOS	
1	488	9	Z	1536	0	.62	15.48		74.7		10.5		9.9	9.60	А	
Faci	lity O	verall	Resu	lts												
Space	e Mean S	Speed, ı	mi/h		74.7			Averag	e Densi [.]	ty, veh,	′mi/ln	9	9.9			
Avera	ge Trave	el Time,	min		9.60			Average Density, pc/mi/ln			1	10.5				
Total	VMT, ve	h-mi			4889			Total V	Total VHD, veh-h				0.62			
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		1	5.48			
	L+ @ 202	2.1.1	·		ights Posonia	.1			2022				<u> </u>	tod: 01/21/20	22 14 12 2	

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_WB.xuf Generated: 01/31/2023 14:13:24

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2025 D/B Traffic Analysis Output Reports

(AM Peak Hour)

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2025
Jurisdiction	D1	Time Analyzed	AM Peak Hour
Project Description	DB Alternative_EB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		-	
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	13465	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	1	•	
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2797	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1041
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.43
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.8
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Freewa	y Diverge Report				
Project Information						
Segment Number 2		Segment Name	SR 951 EB	Off Ramp		
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	15		
Geometric Data		-				
		Freeway	Ramp			
Number of Lanes (N), In		3	2			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Deceleration Length	(LD), ft	1500	1500			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Side	ed Two-Lane		
Adjustment Factors		·				
Driver Population		All Familiar	All Familia	r		
Weather Type		Non-Severe Weather	Non-Seve	re Weather		
Incident Type		No Incident	No Incident -			
Proportion of CAVs in Traffic Stream		0	0 -			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAR	CAV	1.000	1.000 -			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000			
Demand and Capacity		•				
Demand Volume (Vi), veh/h		2797	1663			
Peak Hour Factor (PHF)		0.95	0.95	0.95		
Total Trucks, %		6.00	3.50	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966			
Flow Rate (vi), pc/h		3122	1812			
Capacity (cmd), pc/h		7200	4000			
Initial Adjusted Capacity (cmda), pc/h		7200	-			
Final Adjusted Capacity (cmda), pc/h		7200	4000			
Volume-to-Capacity Ratio (v/c)		0.43	0.45			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/l	n	720		
Downstream Equilibrium Distance (LEQ), ft -		Off-Ramp Influence Area Spee	ed (SR), mi/h	55.7		
Flow in Lanes 1 and 2 (v12), pc/h	2402	Outer Lanes Freeway Speed (S	Outer Lanes Freeway Speed (SO), mi/h			
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h	60.2			
Number of Outer Lanes on Freeway (NO),	In 1	Average Density (D), pc/mi/ln		17.3		
Level of Service (LOS)	В	Density in Ramp Influence Are	a (DR), pc/mi/ln	11.4		

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1134	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	633
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.26
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.4
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Bas	ic Freeway Report					
Project Information							
Segment Number	1	Segment Name	SI	R 951 EB On Ramp Loop			
Analysis Period Number	1	Segment Analysis Period	0.	7:00-07:15			
Geometric Data		· · ·					
		Freeway	Ramp				
Number of Lanes (N), In		3	3 1				
Free-Flow Speed (FFS), mi/h		75.4	35.0				
Segment Length (L) / Acceleration Length (I	_A), ft	1500	800				
Terrain Type		Level	Level				
Percent Grade, %		-	-				
Segment Type / Ramp Type		Freeway	Right-Sic	ded One-Lane			
Adjustment Factors		•					
Driver Population		All Familiar	All Famil	iar			
Weather Type		Non-Severe Weather	Non-Sev	ere Weather			
Incident Type		No Incident	No Incident -				
Proportion of CAVs in Traffic Stream		0	-				
Final Speed Adjustment Factor (SAF)		1.000	1.000				
Demand Adjustment Factor (DAF)		1.000	1.000				
Capacity Adjustment Factor for CAVs, CAFCA	AV	1.000	-				
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000				
Demand and Capacity		·					
Demand Volume (Vi), veh/h		1134	78				
Peak Hour Factor (PHF)		0.95	0.95 0.95				
Total Trucks, %		6.00	6.00 3.50				
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966				
Flow Rate (vi), pc/h		1266	85				
Capacity (cmd), pc/h		7200	2000				
Adjusted Capacity (cmda), pc/h		7200	2000				
Volume-to-Capacity Ratio (v/c)		0.19	0.04				
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), po	c/h/ln	0			
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area Speed (SR), mi/h 75.4		75.4			
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0			
Flow Entering Ramp-Infl. Area (vR12), pc/h 0		Ramp Junction Speed (S),	Ramp Junction Speed (S), mi/h				
Number of Outer Lanes on Freeway (No), In	1	Average Density (D), pc/m	ii/ln	6.0			
Level of Service (LOS)	A	Density in Ramp Influence	Area (DR), pc/mi/l	n 6.0			

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp Loop to SR 951 EB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	710	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1212	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	451
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.19
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Merge Report				
Project Information							
Segment Number 6			Segment Name	SR 951 EB	On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data			1				
			Freeway	Ramp			
Number of Lanes (N), In			3	1			
Free-Flow Speed (FFS), mi/h			75.4				
Segment Length (L) / Acceleration Leng	gth (LA), f	ť	1500	1360			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors			1	1			
Driver Population			All Familiar	All Familia	r		
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident	-			
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF)			1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAVs, C	CAFCAV		1.000				
Final Capacity Adjustment Factor (CAF))		1.000				
Demand and Capacity			•				
Demand Volume (Vi), veh/h			1212	214			
Peak Hour Factor (PHF)			0.95	0.95	5		
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966			
Flow Rate (vi), pc/h			1353	233			
Capacity (cmd), pc/h			7200	2000			
Adjusted Capacity (cmda), pc/h			7200	2000			
Volume-to-Capacity Ratio (v/c)			0.22	0.12			
Speed and Density							
Upstream Equilibrium Distance (LEQ), f	t	-	Flow Outer Lanes (vOA), pc/h/ln		520		
Downstream Equilibrium Distance (LEQ), ft -		-	On-Ramp Influence Area Speed (S	iR), mi/h	67.5		
Flow in Lanes 1 and 2 (v12), pc/h 833		833	Outer Lanes Freeway Speed (SO),	mi/h	75.3		
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	1066	Ramp Junction Speed (S), mi/h		69.9		
Number of Outer Lanes on Freeway (N	IO), In	1	Average Density (D), pc/mi/ln		7.6		
Level of Service (LOS)		A	Density in Ramp Influence Area (D	R), pc/mi/ln	5.2		

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	7	Segment Name	I-75 from SR 951 EB On Ramp to EB Lane Drop
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1426	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	531
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.6
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	7.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Basic F	reeway Report	
Project Information			
Segment Number	8	Segment Name	I-75 From EB Lane Drop to Everglades Blvd EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43985	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1426	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	796
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.33
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

DB Alternative_EB.xuf

HCS Freeway Facilities Report

						HCS F	reeway	Facilit	ies R	epor	t										
Proje	ect In	form	ation																		
Analys	t				Pevida I	Highway	Designers	Date				11/	28/2022								
Agenc	у				Pevida ł	Highway	Designers Analysis Year					2025									
Jurisdi	ction				D1			Time A	nalyzed			AM	AM Peak Hour								
Facility	' Name				I-75 Ma	I-75 Mainline Units U.S. Custor			. Customa	ry											
Projec	t Descri	ption			DB Alte	rnative_E	B Direction o	f Travel													
Facil	ity Gl	obal	Input	:																	
Jam Density, pc/mi/ln 190.0						Density	/ at Cap	acity, po	c/mi/ln	45.	0										
Queue	Discha	rge Ca	oacity D	rop, %	7			Total S	egment	S		8									
Total A	nalysis	Period	5		1			Analysi	s Perioc	d Durati	on, min	15									
Facility	[,] Length	n, mi			12.38																
Facil	ity Se	gme	nt Da	ta																	
No.		Cod	ed	Т	Analyze	d		Name			L	ength, ft		Lanes							
1		Bas	ic		Basic		I-75 From C 9!	R 886 SB 51 EB Off I		ip to SR		13465		3							
2		Dive	rge		Diverge	·	SR 951 EB Off Ramp					1500	3								
3		Bas	ic		Basic		I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp					1840		2							
4		Mer	ge		Basic		SR 95 ⁻	1 EB On Ra	amp Loo	ор		1500		3							
5		Bas	ic		Basic		I-75 From SR SR	8 951 EB O 951 EB Or		Loop t	0	710		3							
6		Mer	ge		Merge		SR	951 EB Or	1 EB On Ramp 150			1500		3							
7		Bas	ic		Basic		I-75 from S	p to EB		840	3										
8		Bas	ic		Basic		I-75 From EB Lane Drop to Everglades Blvd EB Off Ramp					43985	2								
Facil	ity Se	gme	nt Da	ta		·															
							Segme	nt 1: Ba	asic												
ΑΡ	Pł	łF	fŀ	łV	Flow (pc,		Capa (pc,			/c tio	Speed (mi/h)									nsity ni/ln)	LO
1	0.9	95	0.9	943	31	22	72	00	0.	43	75	5.4	13	3.8	В						
							Segmen	t 2: Div	erge												
АР	Pł	łF	fŀ	١V		Flow Rate Capacity (pc/h) (pc/h)				/c tio		eed i/h)		nsity ni/ln)	LO						
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.							
1	0.95	0.95	0.943	0.966	3122	1812	7200	4000	0.43	0.45	60.2	55.7	17.3	11.4	В						
							Segme	nt 3: Ba	asic												
АР	Pł	łF	fŀ	łV	Flow (pc,		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LO						
1	0.9	95	0.9	943	12	66	480	00	0.	26	74	1.4	8.4		A						
							Segmer	nt 4: Me	erae												

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

AP	Pł	łF	fF	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1351	85	7200	2000	0.19	0.04	75.3	75.4	6.0	6.0	A
							Segme	nt 5: Ba	asic						
АР	Pł	łF	fŀ	IV		Flow Rate Capa (pc/h) (pc			d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LO
1	0.9	95	0.9	43	135	53	720	00	0.	19	75	5.4		6.0	A
							Segmen	nt 6: Me	erge						
ΑΡ	Pł	łF	fŀ	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1586	233	7200	2000	0.22	0.12	69.9	67.5	7.6	5.2	A
							Segme	nt 7: Ba	asic						
АР	PHF		fHV Flow Rate Capa (pc/h) (pc/			d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LO			
1	0.9	95	0.9	43	159	92	7200		0.22 74.6		1.6		7.0	A	
							Segme	nt 8: Ba	asic						
ΑΡ	Pł	łF	fŀ	IV	Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LO
1	0.9	95	0.9	43	1592 4800 0.33 75		.4 10.6		10.6	A					
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Demano ·mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h	Τ	Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	561	5	5	315	0.	.84	21.00		74.6		11.3	1().6	10.00	В
Faci	lity Ov	veral	Resu	lts											
Space	Mean S	peed,	mi/h		74.6			Average Density, veh/mi/ln					10.6		
Avera	ge Trave	l Time,	min		10.00			Average Density, pc/mi/ln				11.	11.3		
Total	VMT, vel	h-mi			5615			Total V	HD, veh	-h		0.8	4		
Vehic	e Value	of Time	e (VOT),	\$/h	25.00			Total Delay Cost, \$ 21.00							

DB Alternative_EB.xuf

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2025
Jurisdiction	D1	Time Analyzed	AM Peak Hour
Project Description	DB Alternative_WB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		-	
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·		•
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	962	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	537
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	7.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Diverge Report				
Project Information							
Segment Number	2		Segment Name	SR 951 WE	R 951 WB Off Ramp		
Analysis Period Number	1		Segment Analysis Period	07:00-07:1	5		
Geometric Data							
			Freeway	Ramp			
Number of Lanes (N), In			2	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Deceleration L	.ength (LD)	, ft	1500	250			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors				•			
Driver Population			All Familiar	All Familia			
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident	No Incident			
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF))		1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAV	s, CAFCAV		1.000	-			
Final Capacity Adjustment Factor (CA	AF)		1.000				
Demand and Capacity							
Demand Volume (Vi), veh/h			962	230	230		
Peak Hour Factor (PHF)			0.95	0.95	95		
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fH	IV)		0.943				
Flow Rate (vi), pc/h			1074	251			
Capacity (cmd), pc/h			4800	2000			
Initial Adjusted Capacity (cmda), pc/h	า		4800	-			
Final Adjusted Capacity (cmda), pc/h			4800	2000			
Volume-to-Capacity Ratio (v/c)			0.22	0.13			
Speed and Density							
Upstream Equilibrium Distance (LEQ)), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-		
Downstream Equilibrium Distance (L	EQ), ft	-	Off-Ramp Influence Area Speed	(SR), mi/h	60.3		
Flow in Lanes 1 and 2 (v12), pc/h		1074	Outer Lanes Freeway Speed (SO)), mi/h	82.7		
Flow Entering Ramp-Infl. Area (vR12)), pc/h	-	Ramp Junction Speed (S), mi/h	60.3			
Number of Outer Lanes on Freeway	(No), In	0	Average Density (D), pc/mi/ln 8.9				
Level of Service (LOS)		В	Density in Ramp Influence Area	(DR), pc/mi/ln	11.2		

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1700	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	732	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	408
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.17
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	5.4
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Bas	ic Freeway Report				
Project Information						
Segment Number 4		Segment Name	Segment Name S			
Analysis Period Number 1		Segment Analysis Period	Segment Analysis Period 0			
Geometric Data		· · ·				
		Freeway	Ramp			
Number of Lanes (N), In		3	1			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Acceleration Length (L	4), ft	1500	800			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Si	ded One-Lane		
Adjustment Factors		• •				
Driver Population		All Familiar	All Fami	liar		
Weather Type		Non-Severe Weather	Non-Se	ere Weather		
Incident Type		No Incident	-			
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAFCA	/	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000			
Demand and Capacity						
Demand Volume (Vi), veh/h		732	634			
Peak Hour Factor (PHF)		0.95	0.95 0.95			
Total Trucks, %		6.00	6.00 3.50			
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.943 0.966			
Flow Rate (vi), pc/h		817	817 691			
Capacity (cmd), pc/h		7200	2000			
Adjusted Capacity (cmda), pc/h		7200	2000			
Volume-to-Capacity Ratio (v/c)		0.21	0.35			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), po	c/h/ln	0		
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4		
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0		
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	Ramp Junction Speed (S), mi/h			
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/m	Average Density (D), pc/mi/ln			
Level of Service (LOS)	А	Density in Ramp Influence	Density in Ramp Influence Area (DR), pc/mi/ln 6.			

	HCS Basic Fi	reeway Report		
Project Information				
Segment Number	5	Segment Name	I-75 from SR 951 WB On Ramp Loop to SR 951 WB On Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data				
Number of Lanes (N), In	3	Terrain Type	Level	
Segment Length (L), ft	600	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	1366	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	508	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.21	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.7	
Total Ramp Density Adjustment	-	Level of Service (LOS)	A	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

		HCS Freeway	Merge Report			
Project Information						
Segment Number 6			Segment Name	SR 951 WE	3 On Ramp	
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5	
Geometric Data			1	-		
			Freeway	Ramp		
Number of Lanes (N), In			3	1		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Acceleration Ler	ngth (LA),	ft	1500	1260		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane	
Adjustment Factors			1			
Driver Population			All Familiar	All Familia		
Weather Type			Non-Severe Weather	Non-Sever	e Weather	
Incident Type			No Incident			
Proportion of CAVs in Traffic Stream			0	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)			1.000	1.000		
Capacity Adjustment Factor for CAVs,	CAFcav		1.000	-		
Final Capacity Adjustment Factor (CAF	F)		1.000			
Demand and Capacity			•			
Demand Volume (Vi), veh/h			1366	832		
Peak Hour Factor (PHF)			0.95	0.95		
Total Trucks, %			6.00			
Heavy Vehicle Adjustment Factor (fHV))		0.943	0.966		
Flow Rate (vi), pc/h			1525	907		
Capacity (cmd), pc/h			7200	2000		
Adjusted Capacity (cmda), pc/h			7200	2000		
Volume-to-Capacity Ratio (v/c)			0.34	0.45		
Speed and Density						
Upstream Equilibrium Distance (LEQ),	ft	-	Flow Outer Lanes (vOA), pc/h/ln		590	
Downstream Equilibrium Distance (LEC	Q), ft	-	On-Ramp Influence Area Speed (SR), mi/h	66.8	
Flow in Lanes 1 and 2 (v12), pc/h		935	Outer Lanes Freeway Speed (SO),	mi/h	75.1	
Flow Entering Ramp-Infl. Area (vR12),	pc/h	1842	Ramp Junction Speed (S), mi/h		68.6	
Number of Outer Lanes on Freeway (N	NO), In	1	Average Density (D), pc/mi/ln		11.8	
Level of Service (LOS)		В	Density in Ramp Influence Area (I	DR), pc/mi/ln	11.6	

	HCS Basic F	reeway Report		
Project Information				
Segment Number	7	Segment Name	I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data				
Number of Lanes (N), In	3	Terrain Type	Level	
Segment Length (L), ft	12210	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	2198	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	818	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.34	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.8	
Total Ramp Density Adjustment	-	Level of Service (LOS)	A	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

DB Alternative_WB.xuf

HCS Freeway Facilities Report

Dret	at la	60	atian				reeway	Turcinit								
	ect In	rorm	ατιοή		-			-				1				
Analys					_	<u> </u>	Designers	Date					11/28/2022			
Agenc	-					lighway l	Designers		Analysis Year					2025		
Jurisdi					D1			_	nalyzed				AM Peak Hour			
-	/ Name				I-75 Ma			Units				0.5	5. Customa	ry		
Projec	t Descri	ption			DB Alter	native_W	/B Direction o	of Travel								
Facil	ity Gl	obal	Input	:												
Jam D	ensity, p	oc/mi/lr	۱		190.0			Density	ı at Cap	acity, p	c/mi/ln	45.	.0			
Queue	Discha	rge Cap	oacity D	rop, %	7			Total S	egment	S		7				
Total A	nalysis	Periods	5		1			Analysi	s Perioc	d Durati	on, min	15				
Facility	/ Length	n, mi			11.90											
Facil	ity Se	gme	nt Da	ta												
No.		Cod	ed		Analyze	d		Name			L	ength, ft		Lanes		
1		Bas	ic		Basic		I-75 from Ramp to	Everglade SR 951 W				43840				
2		Dive	rge		Diverge		SR 9	951 WB Of	f Ramp			1500	2			
3		Bas	ic		Basic			m SR 951 WB Off Ramp to SR 951 WB On Ramp Loop				1700		2		
4		Mer	ge		Basic		SR 951	WB On R	amp Lo	ор		1500		3		
5		Bas	ic		Basic		I-75 from SR 951 WB On Ramp Loop to SR 951 WB On Ramp					600		3		
6		Mer	ge		Merge		SR S	951 WB Or	n Ramp			1500		3		
7		Bas	ic		Basic			m SR 951 WB On Ramp to CR 122 886 NB Off Ramp					10 3			
Facil	ity Se	gme	nt Da	ta												
							Segme	nt 1: Ba	asic							
AP	Pł			IV	Flow (pc)	/h)	Capa (pc/	/h)		/c itio		eed i/h)		nsity mi/ln)	LO	
1	0.9	95	0.9	943	107	74	480	00	0.	22	7	5.4	7	7.1	A	
							Segmen	t 2: Div	erge							
AP	Pł	łF	fł	IV	Flow (pc,		Capa (pc/			/c itio		eed i/h)		nsity mi/ln)	LO	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.95	0.95	0.943	0.966	1074	251	4800	2000	0.22	0.13	60.3	60.3	8.9	11.2	В	
							Segme	nt 3: Ba	asic							
AP	P PHF		PHF fi			Flow Rate (pc/h)		city /h)				eed i/h)		nsity mi/ln)	LO	
1	0.9	95	0.9	943	81	7	480	00	0.	.17	7.	4.3	5	5.4	A	
							Segmer	nt 4: Me	erge							
AP	Pł	łF	fł	IV	Flow (pc,		Capa (pc)			/c itio		eed i/h)		nsity mi/ln)	LO	

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1508	691	7200	2000	0.21	0.35	75.3	75.4	6.7	6.7	A
							Segme	nt 5: Ba	asic						
АР	Pł	łF	fŀ	IV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		eed i/h)	Density (pc/mi/ln)		LO
1	0.9	95	0.9	943	152	25	720	00	0.	21	75	5.4		6.7	A
							Segmer	nt 6: Me	erge						
АР	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/			/c tio		eed i/h)		ensity :/mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2432	907	7200	2000	0.34	0.45	68.6	66.8	11.8	11.6	В
							Segme	nt 7: Ba	asic						
ΑΡ	Pł	HF fHV		-	Flow Rate Capac (pc/h) (pc/h			d/c Ratio			eed i/h)		ensity :/mi/ln)	LO	
1	0.9	95	0.9	943	245	54	7200 0.34		34	75	5.4		10.8	A	
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		isity mi/ln	TT min	LOS
1	3879	9	3	3583	0.	.47	11.68		74.7		8.2	7	.7	9.60	А
Faci	lity O	verall	Resu	lts											
Space	e Mean S	ipeed, i	mi/h		74.7			Averag	e Densi	ty, veh/	/mi/ln	7.7	7.7		
Avera	ge Trave	l Time,	min		9.60			Average Density, pc/mi/ln			8.2	8.2			
[otal	VMT, vel	h-mi			3879			Total V	HD, veh	-h		0.4	0.47		
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		11.	11.68		
					ights Reserve	d.	HCSTM Freev		2023					ed: 01/31/202	3

DB Alternative_WB.xuf

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2025 D/B Traffic Analysis Output Reports

(PM Peak Hour)

HCS Freeway Facilities Report

						HCS F	Freeway	Facilit	ies R	epor	t								
Proje	ect In	form	ation																
Analys	t				Pevida H	Highway	Designers	Date				11/	/28/2022						
Agenc	у				Pevida I	Highway	y Designers Analysis Year					2025							
Jurisdi	ction				D1			Time Analyzed			Time Analyzed PM Pe			PM Peak Hour					
Facility	' Name				I-75 Ma	inline		Units				U.S	U.S. Customary						
Project	t Descri	ption			DB Alte	rnative_E	B Direction o	f Travel											
Facil	ity Gl	obal	Input	•															
Jam De	ensity, p	oc/mi/lr	า		190.0			Density	/ at Cap	acity, po	c/mi/ln	45.	0						
Queue	Discha	rge Ca	oacity D	rop, %	7			Total S	egment	S		8							
Total A	nalysis	Period	5		1			Analysi	s Perioc	d Durati	on, min	15							
Facility	. Length	n, mi			12.38														
Facil	ity Se	gme	nt Da	ta															
No.	T	Cod	ed		Analyze	d		Name			L	ength, ft		Lanes					
1		Bas	ic		Basic		I-75 From C 9!	R 886 SB 51 EB Off I		ip to SR		13465		3					
2		Dive	rge		Diverge		SR	951 EB Of	f Ramp			1500		3					
3	Basic Basic I-75 From SR 951 EB Off Ramp to SR 1840 951 EB On Ramp 951 EB On Ramp									2									
4		Mer	ge		Basic		SR 95 ⁻	1 EB On Ra	amp Loo	ор		1500	3						
5		Bas	ic		Basic		I-75 From SR SR	8 951 EB O 951 EB Or		Loop t	0	710							
6		Mer	ge		Merge		SR	951 EB Or	Ramp			1500		3					
7		Bas	ic		Basic		I-75 from S	R 951 EB (Lane Dro		p to EB		840	3						
8		Bas	ic		Basic		I-75 From EE Bl	3 Lane Dro vd EB Off		erglade	s	43985		2					
Facil	ity Se	gme	nt Da	ta		I													
							Segme	nt 1: Ba	asic										
АР	Pł	łF	fŀ	łV	Flow (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS				
1	0.9	95	0.9	943	24	54	72	00	0.	34	75	5.4	1(D.8	Α				
							Segmen	t 2: Div	erge										
АР	Pł	łF	fŀ	١V	Flow (pc,		Capa (pc,			/c itio		eed i/h)		nsity ni/ln)	LOS				
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.					
1	0.95	0.95	0.943	0.966	2454	1424	7200	4000	0.34	0.36	61.2	56.8	13.4	7.0	Α				
							Segme	nt 3: Ba	asic										
AP	Pł	łF	fł	łV	Flow (pc,		Capa (pc,			/c tio		eed i/h)	Density (pc/mi/ln)		LOS				
1	0.9	95	0.9	943	99	95	480	00	0.	21	74	4.5	6	.6	А				
							Segmer	nt 4: Me	erae										

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

AP	Pł	HF	fF	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1063	68	7200	2000	0.15	0.03	75.3	75.4	4.7	4.7	A
							Segme	nt 5: Ba	asic						
АР	Pł	łF	fHV				Capa (pc/				Speed (mi/h)		Density (pc/mi/ln)		LO
1	0.9	95	0.9	43	106	54	720	00	0.	15	75	5.4		4.7	A
							Segmen	t 6: Me	erge						
AP	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	1247	183	7200	2000	0.17	0.09	70.0	67.6	5.9	3.5	A
							Segme	nt 7: Ba	asic						
АР	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
1	0.9	95	0.9	43	125	51	720	0	0.	17	74	1.6		5.5	A
							Segme	nt 8: Ba	asic						
ΑΡ	Pł	łF	fŀ	iv	Flow (pc,		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
1	0.9	95	0.9	0.943 1251 4800 0					0.2	26	75	5.4		8.3	A
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Demano •mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h	Т	Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	4414	4	4	177	0.	.61	15.32		74.6		8.8	8	.3	10.00	А
Faci	lity O	veral	Resu	lts											
Space	Mean S	Speed,	mi/h		74.6			Averag	e Densi	ty, veh/	ˈmi/ln	8.3			
Avera	ge Trave	el Time,	min		10.00			Averag	e Densit	ty, pc/n	ni/ln	8.8			
Average Travel Time, min1Total VMT, veh-mi4								Total V	HD, veh	-h		0.6	1		
Vehicl	e Value	of Time	e (VOT),	\$/h	25.00						15.32				

DB Alternative_EB.xuf

Project Information					
Analyst	Pevida Highway Designers	Date	11/28/2022		
Agency	Pevida Highway Designers	Analysis Year	2025		
Jurisdiction	D1	Time Analyzed	PM Peak Hour		
Project Description	DB Alternative_WB Direction of Travel	Units	U.S. Customary		
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data		-			
Number of Lanes (N), In	2	Terrain Type	Level		
Segment Length (L), ft	43840	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors	·	•			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	1225	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	684		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.28		
Speed and Density			·		
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.1		
Total Ramp Density Adjustment	-	Level of Service (LOS)	A		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

	HCS Freeway	Diverge Report			
Project Information					
Segment Number 2		Segment Name	SR 951 WE	B Off Ramp	
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5	
Geometric Data		-			
		Freeway	Ramp		
Number of Lanes (N), In		2	1		
Free-Flow Speed (FFS), mi/h		75.4	35.0		
Segment Length (L) / Deceleration Length (L	D), ft	1500	250		
Terrain Type		Level	Level		
Percent Grade, %		-	-		
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane	
Adjustment Factors		-			
Driver Population		All Familiar	All Familia		
Weather Type		Non-Severe Weather	Non-Sever	e Weather	
Incident Type		No Incident	-		
Proportion of CAVs in Traffic Stream		0	-		
Final Speed Adjustment Factor (SAF)		1.000	1.000		
Demand Adjustment Factor (DAF)		1.000	1.000		
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-		
Final Capacity Adjustment Factor (CAF)		1.000	1.000		
Demand and Capacity					
Demand Volume (Vi), veh/h		1225	292		
Peak Hour Factor (PHF)		0.95	0.95		
Total Trucks, %		6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966		
Flow Rate (vi), pc/h		1367	318		
Capacity (cmd), pc/h		4800	2000		
Initial Adjusted Capacity (cmda), pc/h		4800	-		
Final Adjusted Capacity (cmda), pc/h		4800	2000		
Volume-to-Capacity Ratio (v/c)		0.28	0.16		
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-	
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.1	
Flow in Lanes 1 and 2 (v12), pc/h	1367	Outer Lanes Freeway Speed (SO),	mi/h	82.7	
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h 60.1			
Number of Outer Lanes on Freeway (NO), In	0	Average Density (D), pc/mi/ln 11.4			
Level of Service (LOS)	В	Density in Ramp Influence Area (I	DR), pc/mi/ln	13.8	

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	1700	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	933	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	520
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.22
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	6.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Bas	sic Freeway Report			
Project Information					
Segment Number 4		Segment Name		SR 951 WB On Ramp Loop	
Analysis Period Number 1		Segment Analysis Period		07:00-07:15	
Geometric Data		·	i		
		Freeway	Ramp		
Number of Lanes (N), In		3	1		
Free-Flow Speed (FFS), mi/h		75.4	35.0		
Segment Length (L) / Acceleration Length (L	A), ft	1500	800		
Terrain Type		Level	Level		
Percent Grade, %		-	-		
Segment Type / Ramp Type		Freeway	Right-S	ided One-Lane	
Adjustment Factors			•		
Driver Population		All Familiar	All Fam	iliar	
Weather Type		Non-Severe Weather	Non-Se	evere Weather	
Incident Type		No Incident	-		
Proportion of CAVs in Traffic Stream		0	-		
Final Speed Adjustment Factor (SAF)		1.000	1.000		
Demand Adjustment Factor (DAF)		1.000	1.000		
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-		
Final Capacity Adjustment Factor (CAF)		1.000	1.000		
Demand and Capacity			•		
Demand Volume (Vi), veh/h		933	806		
Peak Hour Factor (PHF)		0.95	0.95		
Total Trucks, %		6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966		
Flow Rate (vi), pc/h		1041	878		
Capacity (cmd), pc/h		7200	2000		
Adjusted Capacity (cmda), pc/h		7200	2000		
Volume-to-Capacity Ratio (v/c)		0.27	0.44		
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	oc/h/ln	0	
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4	
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spe	ed (SO), mi/h	75.0	
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	, mi/h	75.3	
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/n	Average Density (D), pc/mi/ln 8.5		
Level of Service (LOS)	A	Density in Ramp Influence	e Area (DR), pc/mi,	/ln 8.5	

	HCS Basic Fre	eeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 from SR 951 WB On Ramp Loop to SR 951 WB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	600	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFcav	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1739	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	647
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.27
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	8.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Merge Report		
Project Information					
Segment Number 6			Segment Name	SR 951 WE	3 On Ramp
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5
Geometric Data					
			Freeway	Ramp	
Number of Lanes (N), In			3	1	
Free-Flow Speed (FFS), mi/h			75.4	35.0	
Segment Length (L) / Acceleration Leng	gth (LA), f	ft	1500	1260	
Terrain Type			Level	Level	
Percent Grade, %			-	-	
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane
Adjustment Factors			•	<u> </u>	
Driver Population			All Familiar	All Familia	r
Weather Type			Non-Severe Weather	Non-Sever	e Weather
Incident Type			No Incident	-	
Proportion of CAVs in Traffic Stream			0	-	
Final Speed Adjustment Factor (SAF)			1.000	1.000	
Demand Adjustment Factor (DAF)			1.000	1.000	
Capacity Adjustment Factor for CAVs, C	CAFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)			1.000	1.000	
Demand and Capacity			•		
Demand Volume (Vi), veh/h			1739	1058	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, %			6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966	
Flow Rate (vi), pc/h			1941	1153	
Capacity (cmd), pc/h			7200	2000	
Adjusted Capacity (cmda), pc/h			7200	2000	
Volume-to-Capacity Ratio (v/c)			0.43	0.58	
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	t	-	Flow Outer Lanes (vOA), pc/h/ln		751
Downstream Equilibrium Distance (LEQ), ft -			On-Ramp Influence Area Speed (S	SR), mi/h	66.3
Flow in Lanes 1 and 2 (v12), pc/h		1190	Outer Lanes Freeway Speed (SO), mi/h		74.5
Flow Entering Ramp-Infl. Area (vR12), p	c/h	2343	Ramp Junction Speed (S), mi/h	68.1	
Number of Outer Lanes on Freeway (N	0), In	1	Average Density (D), pc/mi/ln		15.1
Level of Service (LOS)		В	Density in Ramp Influence Area (D	DR), pc/mi/ln	15.4

	HCS Basic F	reeway Report	
Project Information			
Segment Number	7	Segment Name	I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	12210	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2797	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1041
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.43
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.8
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

DB Alternative_WB.xuf

HCS Freeway Facilities Report

1	0.	95	0.9	943	104	41	480 Segmer		<u> </u>	22	74	4.3		6.9	A	
АР	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/	city	d	/c tio		eed i/h)		ensity /mi/ln)	LOS	
T	0.95	0.95	0.943	0.900	1507	516	Segme		<u> </u>	0.16	00.1	00.1	11.4	15.0	D	
1	F 0.95	R 0.95	F 0.943	R 0.966	Freeway 1367	Ramp 318	Freeway 4800	Ramp 2000	F 0.28	R 0.16	F 60.1			R Infl. 13.8	В	
AP	Pł			iv	Flow (pc,	/h)	Capa (pc/	/h)	Ra	/c tio	(m	eed i/h)		msity /mi/ln)	LOS	
							Segmen		-				1		1	
1	0.9	95	0.9	943	130	57	480	00	0.	28	75	5.4		9.1	A	
АР	Pł	łF	fł	IV	Flow (pc,		Capa (pc/			/c tio		eed i/h)		ensity 'mi/ln)	LO	
							Segme	nt 1: Ba	sic							
Facil	lity Se	gme	nt Da	ta												
7		Bas	ic		Basic		I-75 from SF 88	8 951 WB 0 6 NB Off F		p to CR		12210		3		
6		Mer	ge		Merge			951 WB Or				1500		3		
5		Bas	ic		Basic		I-75 from SI to SR	R 951 WB 951 WB C				600		3		
4		Mer	ge		Basic			WB On R				1500		3		
3		Bas	ic		Basic		I-75 from SF 951 V	R 951 WB (VB On Rar				1700)			
2		Dive	rge		Diverge		•	951 WB Of		amp		1500	2			
1		Bas	ic		Basic		I-75 from	Everglade SR 951 W				43840		2		
No.		Cod			Analyze	d		Name			L	ength, ft	:	Lanes		
	ity Se		nt Da	ta												
	y Lengtł		,		11.90			Analysi				13	,			
	e Discha Analysis	<u> </u>		rop, %	7			_	egment		on, min	7	5			
	ensity, p				190.0					acity, p	c/mi/ln		5.0			
Facil	lity Gl	obal	Input	:												
Projec	t Descri	ption		DB Alternative_WB Direction of Travel												
Facility	y Name				I-75 Ma	inline		Units				U.	S. Custom	ary		
Jurisdi	-				D1			Time Analyzed					PM Peak Hour			
Agenc					_	<u> </u>	Designers	Analysis Year)25			
Analys	:†				Pevida H	liabway [Designers	Date				11	1/28/2022			

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

1	0.95				Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
	0.55	0.95	0.943	0.966	1919	878	7200	2000	0.27	0.44	75.3	75.4	8.5	8.5	A
v							Segme	nt 5: Ba	asic						
AP	PH	łF	fHV Flow R (pc/h				Capa (pc/		d/c Ratio		Spo (mi	eed /h)	Density (pc/mi/ln)		LO
1	0.9	95	0.9	43	194	11	720	00	0.2	27	75	5.4		8.6	A
							Segmen	t 6: Me	erge						
AP	PF	łF	f⊦	IV	Flow (pc/		Capa (pc/		d, Ra	/c tio	Spo (mi	eed i/h)		ensity /mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	3094	1153	7200	2000	0.43	0.58	68.1	66.3	15.1	15.4	В
							Segme	nt 7: Ba	asic						
AP	PH	łF	f⊦	IV	Flow (pc/		Capa (pc/		d, Ra	/c tio	Spo (mi	eed /h)		ensity /mi/ln)	LO
1	0.9	95	0.9	43	312	22	720	00	0.4	43	75	5.4		13.8	В
acili	ity Ar	nalysi	s Res	ults											
AP v	VMT veh-mi			Deman ·mi/AP		ID ·h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/i	sity mi/ln	TT min	LOS
1	4936	5	4	561	0.	62	15.55		74.7		10.5	9	.9	9.60	А
acili	ity Ov	/erall	Resu	lts											
pace N	Mean S	peed, r	mi/h		74.7			Averag	e Densit	ty, veh/	/mi/ln	9.9			
werage	verage Travel Time, min 9.60							Average Density, pc/mi/ln			10.	10.5			
Total VMT, veh-mi 4936								Total V	HD, veh	-h		0.6	2		
/ehicle	Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Cos	st, \$		15.	55		

DB Alternative_WB.xuf

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2045 RFP Traffic Analysis Output Reports

(AM Peak Hour)

		7 1			
Project Information					
Analyst	Pevida Highway Designers	Date	11/28/2022		
Agency	Pevida Highway Designers	Analysis Year	2045		
Jurisdiction	D1	Time Analyzed	AM Peak Hour		
Project Description	RFP Alternative_EB Direction of Travel	Units	U.S. Customary		
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data					
Number of Lanes (N), In	3	Terrain Type	Level		
Segment Length (L), ft	13465	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.33		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors					
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	4586	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1706		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.71		
Speed and Density	·	•			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	69.7		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	24.5		
Total Ramp Density Adjustment	-	Level of Service (LOS)	С		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

	HCS Freew	ay Diverge Report		
Project Information				
Segment Number 2		Segment Name	SR 951 EB	Off Ramp
Analysis Period Number 1		Segment Analysis Period	07:00-07:	15
Geometric Data				
		Freeway	Ramp	
Number of Lanes (N), In		3	2	
Free-Flow Speed (FFS), mi/h		75.4	35.0	
Segment Length (L) / Deceleration Length	(LD), ft	1500	1500	
Terrain Type		Level	Level	
Percent Grade, %		-	-	
Segment Type / Ramp Type		Freeway	Right-Side	ed Two-Lane
Adjustment Factors		· · ·	· ·	
Driver Population		All Familiar	All Familia	ır
Weather Type		Non-Severe Weather	Non-Seve	re Weather
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAR	CAV	1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity		·	•	
Demand Volume (Vi), veh/h		4586	2419	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, %		6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	
Flow Rate (vi), pc/h		5119	2636	
Capacity (cmd), pc/h		7200	4000	
Initial Adjusted Capacity (cmda), pc/h		7200	-	
Final Adjusted Capacity (cmda), pc/h		7200	4000	
Volume-to-Capacity Ratio (v/c)		0.71	0.66	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/	In	1366
Downstream Equilibrium Distance (LEQ), f	: -	Off-Ramp Influence Area Spee	ed (SR), mi/h	53.2
Flow in Lanes 1 and 2 (v12), pc/h	3753	Outer Lanes Freeway Speed (S	50), mi/h	81.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/l	h	58.6
Number of Outer Lanes on Freeway (NO),	In 1	Average Density (D), pc/mi/ln		29.1
Level of Service (LOS)	С	Density in Ramp Influence Are	ea (DR), pc/mi/ln	23.0

HCS Basic Freeway Report Project Information							
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	2	Terrain Type	Level				
Segment Length (L), ft	5095	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.33				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	2167	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1210				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	16.2				
Total Ramp Density Adjustment	-	Level of Service (LOS)	В				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

	ŀ	HCS Freeway	Merge Report		
Project Information					
Segment Number 4			Segment Name	SR 951 EB	On Ramp
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5
Geometric Data			1		
			Freeway	Ramp	
Number of Lanes (N), In			2	1	
Free-Flow Speed (FFS), mi/h			75.4	35.0	
Segment Length (L) / Acceleration Leng	th (LA), ft		1500	1260	
Terrain Type			Level	Level	
Percent Grade, %			-	-	
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane
Adjustment Factors			1		
Driver Population			All Familiar	All Familia	-
Weather Type			Non-Severe Weather	Non-Sever	e Weather
Incident Type			No Incident	-	
Proportion of CAVs in Traffic Stream			0	-	
Final Speed Adjustment Factor (SAF)			1.000	1.000	
Demand Adjustment Factor (DAF)			1.000	1.000	
Capacity Adjustment Factor for CAVs, CA	AFCAV		1.000	-	
Final Capacity Adjustment Factor (CAF)			1.000	1.000	
Demand and Capacity			•		
Demand Volume (Vi), veh/h			2167	554	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, %			6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966	
Flow Rate (vi), pc/h			2419	604	
Capacity (cmd), pc/h			4800	2000	
Adjusted Capacity (cmda), pc/h			4800	2000	
Volume-to-Capacity Ratio (v/c)			0.63	0.30	
Speed and Density			•		
Upstream Equilibrium Distance (LEQ), ft	-		Flow Outer Lanes (vOA), pc/h/ln		-
Downstream Equilibrium Distance (LEQ),	, ft -		On-Ramp Influence Area Speed (S	iR), mi/h	64.9
Flow in Lanes 1 and 2 (v12), pc/h	2	419	Outer Lanes Freeway Speed (SO),	mi/h	75.4
Flow Entering Ramp-Infl. Area (vR12), pc	/h 3	023	Ramp Junction Speed (S), mi/h		64.9
Number of Outer Lanes on Freeway (NC	o), In 0)	Average Density (D), pc/mi/ln		23.3
Level of Service (LOS)	С		Density in Ramp Influence Area (D	R), pc/mi/ln	20.9

HCS Basic Freeway Report Project Information							
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	2	Terrain Type	Level				
Segment Length (L), ft	43780	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.00				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	2721	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1518				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.63				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.3				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	21.0				
Total Ramp Density Adjustment	-	Level of Service (LOS)	С				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

RFP Alternative_EB.xuf

					l	HCS F	reeway	Facilit	ies R	epor	t						
Proje	ect In	form	ation														
Analys	t				Pevida ł	Pevida Highway Designers Date							11/28/2	2022			
Agenc	у				Pevida ł	lighway I	Designers	Analysi	s Year				2045	2045			
Jurisdi	ction				D1			Time A	nalyzed				AM Pea	ak Hou	r		
Facility	Name				I-75 Ma	inline		Units					U.S. Cu	stomar	у		
Project	t Descri	ption			RFP Alte	ernative_E	B Direction o	of Travel									
Facil	ity Gl	obal	Input	:													
Jam De	ensity, J	oc/mi/l	n		190.0			Density	/ at Cap	acity, po	:/mi/ln	·	45.0				
Queue	Discha	rge Ca	pacity D	rop, %	7			Total S	egment	s			5				
Total A	nalysis	Period	s		1			Analysi	s Perioc	d Duratio	on, min		15				
Facility	Lengtł	n, mi			12.38												
Facil	ity Se	egme	nt Da	ta													
No.		Cod	ed		Analyze	d		Name			L	ength,	ft	Γ	Lanes		
1		Bas	ic		Basic		I-75 From C 9!	R 886 SB (51 EB Off F		ip to SR		13465			3		
2		Dive	rge		Diverge		SR	951 EB Of	f Ramp			1500		3			
3		Bas	ic		Basic		I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp				5095		2				
4		Mer	ge		Merge		SR	951 EB Or	Ramp			1500			2		
5		Bas	ic		Basic		l-75 From Everglad	SR 951 EE des Blvd E				43780			2		
Facil	ity Se	egme	nt Da	ta													
							Segme	nt 1: Ba	asic								
АР	PI	łF	fŀ	IV	Flow (pc,		Capa (pc,			/c tio		eed i/h)			nsity ni/ln)	LOS	
1	0.	95	0.9	943	51	19	720	00	0.	71	69	9.7		24	4.5	C	
							Segmen	t 2: Div	erge								
АР	PI	łF	fŀ	IV	Flow (pc		Capa (pc,			/c itio		eed i/h)			nsity ni/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	fl.	F	R Infl.		
1	0.95	0.95	0.943	0.966	5119	2636	7200	4000	0.71	0.66	58.6	53.2	2	29.1	23.0	C	
							Segme	nt 3: Ba	asic								
AP	PI	łF	fŀ	IV	Flow (pc,		Capa (pc,			/c tio		eed i/h)			nsity ni/ln)	LOS	
1	0.	95	0.9	943	24	2419 4800 0.50 74.8				4.8		16	5.2	В			
							Segmer	nt 4: Me	erge								
АР	PI	łF	fŀ	IV	Flow (pc,		Capa (pc,			/c tio		eed i/h)			sity ni/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	fl.	F	R Infl.		
1	0.95	0.95	0.943	0.966	3023	604	4800	2000	0.63	0.30	64.9	64.9)	23.3	20.9	С	

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

	Segment 5: Basic										
AP	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)		d/c Ratio	Spee (mi/h			Density c/mi/ln)	LOS
1	0.95	0.943	3037	4800		0.63	72.3			21.0	С
Fac	ility Analys	is Results									
AP	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay Co \$/AP	st	Speed mi/h	Density pc/mi/ln	Den veh/r		TT min	LOS
1	10110	9567	8.51	212.76		70.9	21.9	20	.7	10.50	С
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	70.9		Averag	e Density, ve	eh/mi/ln	20.7	7		
Average Travel Time, min 10.50 Average Density, pc/mi/ln 21.9											
Total VMT, veh-mi 10110 Total VHD, veh-h 8.51											
Vehi	cle Value of Tim	e (VOT), \$/h	25.00		Total D	elay Cost, \$		212	.76		

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_EB.xuf Generated: 01/31/2023 12:36:49

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2045
Jurisdiction	D1	Time Analyzed	AM Peak Hour
Project Description	RFP Alternative_WB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		-	
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·		·
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2059	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1149
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.48
Speed and Density			·
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.1
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	15.3
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Freeway	Diverge Report		
Project Information				
Segment Number 2		Segment Name	SR 951 WE	3 Off Ramp
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5
Geometric Data		-	<u> </u>	
		Freeway	Ramp	
Number of Lanes (N), In		2	1	
Free-Flow Speed (FFS), mi/h		75.4	35.0	
Segment Length (L) / Deceleration Length	(LD), ft	1500	250	
Terrain Type		Level	Level	
Percent Grade, %		-	-	
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane
Adjustment Factors				
Driver Population		All Familiar	All Familia	r
Weather Type		Non-Severe Weather	Non-Sever	e Weather
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAF	CAV	1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		2059	356	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, %		6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	
Flow Rate (vi), pc/h		2298	388	
Capacity (cmd), pc/h		4800	2000	
Initial Adjusted Capacity (cmda), pc/h		4800	-	
Final Adjusted Capacity (cmda), pc/h		4800	2000	
Volume-to-Capacity Ratio (v/c)		0.48	0.19	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	SR), mi/h	59.9
Flow in Lanes 1 and 2 (v12), pc/h	2298	Outer Lanes Freeway Speed (SO), I	mi/h	82.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		59.9
Number of Outer Lanes on Freeway (NO),	n 0	Average Density (D), pc/mi/ln		19.2
Level of Service (LOS)	С	Density in Ramp Influence Area (D	R), pc/mi/ln	21.8

HCS Basic Freeway Report Project Information						
Analysis Period Number	1	Segment Analysis Period	07:00-07:15			
Geometric Data						
Number of Lanes (N), In	2	Terrain Type	Level			
Segment Length (L), ft	2850	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50			
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4			
Right-Side Lateral Clearance, ft	-					
Adjustment Factors						
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000			
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000			
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000			
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000			
Demand and Capacity						
Demand Volume (V), veh/h	1703	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	950			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400			
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400			
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400			
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.40			
Speed and Density						
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9			
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	12.6			
Total Ramp Density Adjustment	-	Level of Service (LOS)	В			
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4					

	HCS Bas	ic Freeway Report		
Project Information				
Segment Number 4		Segment Name	SF	R 951 WB On Ramp Loop
Analysis Period Number 1		Segment Analysis Period	07	7:00-07:15
Geometric Data		· ·	· · ·	
		Freeway	Ramp	
Number of Lanes (N), In		3	1	
Free-Flow Speed (FFS), mi/h		75.4	35.0	
Segment Length (L) / Acceleration Length (L	A), ft	980	800	
Terrain Type		Level	Level	
Percent Grade, %		-	-	
Segment Type / Ramp Type		Freeway	Right-Sic	led One-Lane
Adjustment Factors		•		
Driver Population		All Familiar	All Famili	ar
Weather Type		Non-Severe Weather	Non-Sev	ere Weather
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand and Capacity		•	•	
Demand Volume (Vi), veh/h		1703	990	
Peak Hour Factor (PHF)		0.95	0.95	
Total Trucks, %		6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	
Flow Rate (vi), pc/h		1901	1079	
Capacity (cmd), pc/h		7200	2000	
Adjusted Capacity (cmda), pc/h		7200	2000	
Volume-to-Capacity Ratio (v/c)		0.41	0.54	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	c/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	mi/h	75.4
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/m	ni/ln	13.2
Level of Service (LOS)	В	Density in Ramp Influence	e Area (DR), pc/mi/li	n 13.2

HCS Freeway Merge Report							
Project Information							
Segment Number 5			Segment Name	SR 951 WE	3 On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data							
			Freeway	Ramp			
Number of Lanes (N), In			3	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Acceleration Leng	gth (LA), f	ft	1500	1250			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors			•				
Driver Population			All Familiar	All Familia	r		
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident	-			
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF)			1.000	1.000			
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-			
Final Capacity Adjustment Factor (CAF))		1.000	1.000			
Demand and Capacity			•				
Demand Volume (Vi), veh/h			2693	911			
Peak Hour Factor (PHF)			0.95	0.95			
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966			
Flow Rate (vi), pc/h			3006	993			
Capacity (cmd), pc/h			7200	2000			
Adjusted Capacity (cmda), pc/h			7200	2000			
Volume-to-Capacity Ratio (v/c)			0.56	0.50			
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	t	-	Flow Outer Lanes (vOA), pc/h/ln		1166		
Downstream Equilibrium Distance (LEQ)), ft	-	On-Ramp Influence Area Speed (S	SR), mi/h	65.4		
Flow in Lanes 1 and 2 (v12), pc/h		1840	Outer Lanes Freeway Speed (SO),	mi/h	73.0		
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	2833	Ramp Junction Speed (S), mi/h		67.4		
Number of Outer Lanes on Freeway (N	lo), In	1	Average Density (D), pc/mi/ln		19.8		
Level of Service (LOS)		В	Density in Ramp Influence Area (D	DR), pc/mi/ln	19.4		

HCS Basic Freeway Report Project Information							
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	3	Terrain Type	Level				
Segment Length (L), ft	12185	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	3604	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1341				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.56				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.0				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.1				
Total Ramp Density Adjustment	-	Level of Service (LOS)	С				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

RFP Alternative_WB.xuf

HCS Freeway Facilities Report

					(pc)	,,	q,					, , ,		Q/ -		
AP	Pł	HF	fŀ	łV	Flow (pc		Capa (pc)	city	d	/c tio		eed ni/h)	Density (pc/mi/ln)		LOS	
							Segmer	nt 4: Me	erge							
1	0.9	95	0.9	943	19		480	-		40	-	4.9			2.6	В
АР	Pł	HF	fŀ	łV	Flow (pc		Capa (pc,			/c tio		eed ni/h)			nsity ni/ln)	LOS
							Segme	nt 3: Ba	sic							
1	0.95	0.95	0.943	0.966	2298	388	4800	2000	0.48	0.19	59.9	59.9) 1	9.2	21.8	С
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	1.	F	R Infl.	
АР	Pł	HF	fł	łV	Flow (pc		Capa (pc)	city	d,	/c tio		eed ni/h)			isity ni/ln)	LOS
	0.		0.5	,,J			Segmen			10	/	5.1		1.		0
AP		HF 95		IV 943	Flow (pc)	/h)	Capa (pc) 480	′h)	Ra	/c tio 48	(m	eed ni/h) 5.1		Density (pc/mi/ln) 15.3		LOS B
							Segme	nt 1: Ba								
Facil	ity Se	egme	nt Da	ta												
0		Das			Dasic			6 NB Off F				12103	, , , , , , , , , , , , , , , , , , , ,			
5	_	Mer Bas	-	_	Merge Basic		SR 951 WB On Ramp				1500 12185			3		
4		Mer	-		Basic	SR 951 WB On Ramp Loop					980			3		
3		Bas	ic		Basic		I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop					2850			2	
2		Dive			Diverge		SR 951 WB Off Ramp				1500			2		
1		Bas	ic		Basic			rom Everglades Blvd WB Off np to SR 951 WB Off Ramp				43840			2	
No.		Cod	ed		Analyze	d		Name		Length			ft		Lanes	
Facil	ity Se	egme	nt Da	ta												
Facility	' Lengtł	n, mi			11.90											
Total A	nalysis	Period	S		1			Analysi	s Perioc	l Durati	on, min	·	15			
			bacity D	orop, %	_			Total Se			_/ 1111/ 111		6 6			
	ensity, p		Input	•	190.0			Doncity	uat Can	acity, po	/mi/ln		45.0			
-		·	الممينا				VB Direction									
	v Name t Descri				I-75 Ma		VB Direction	Units					U.S. Cus	tomar	У	
Jurisdi					D1				ne Analyzed				AM Peak			
Agenc	у				Pevida H	lighway I	Designers	Analysi	nalysis Year				2045			
Analys	t				Pevida ł	Highway I	Designers	Date					11/28/2022			
Proje	ect In	form	ation													
	_						reeway	raciiit		срог			_			

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

Jouoig		00 ID. 02		01011	51 3-ACTD-5	00120200	10									
1	0.95	0.95	0.943	0.966	2980	1079	7200	2000	0.41	0.54	75.4	75.4	13.2	2	13.2	В
							Segmer	nt 5: Mo	erge							
AP	P PHF fHV		-	Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	l. F	F	R Infl.	
1	0.95	0.95	0.943	0.966	3999	993	7200	2000	0.56	0.50	67.4	65.4	19.8	;	19.4	В
							Segme	nt 6: Ba	asic							
AP	P	HF	fŀ	iV	Flow (pc,		Capa (pc/			/c tio	Spo (mi	ed i/h)		Density (pc/mi/ln)		LOS
1	0.	95	0.9	943	402	23	720	00	0.	56	74.0		18.1			С
Faci	lity A	nalysi	is Res	ults												
ΑΡ	VM [.] veh-m	-		Deman -mi/AP	-	HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		· ·		ensity h/mi/ln	דד m		LOS
1	748	1	7	7000	1	.76	43.93		74.1		16.1		15.2	9.6	50	В
Faci	lity O	verall	Resu	lts												
Space	e Mean S	Speed, r	mi/h		74.1			Averag	e Densi	ty, veh/	′mi/ln	•	15.2			
Average Travel Time, min 9.60						Averag	e Densi	ty, pc/r	ni/ln		16.1					
Total	VMT, ve	h-mi			7481			Total V	Total VHD, veh-h				1.76			
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		4	13.93			
- · · ·	LL @ 202				iahta Dacamia	1			2022				<u></u>	1	124 12022	12.42.47

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_WB.xuf Generated: 01/31/2023 12:42:47

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2045 RFP Traffic Analysis Output Reports

(PM Peak Hour)

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2045
Jurisdiction	D1	Time Analyzed	PM Peak Hour
Project Description	RFP Alternative_EB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		·	
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	13465	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	3604	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1341
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.56
Speed and Density		·	
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	С
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway I	Diverge Report				
Project Information							
Segment Number 2			Segment Name	SR 951 EB	SR 951 EB Off Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data			1				
			Freeway	Ramp			
Number of Lanes (N), In			3	2			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Deceleration Len	ngth (LD),	ft	1500	1500			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	ed Two-Lane		
Adjustment Factors							
Driver Population			All Familiar	All Familia	r		
Weather Type			Non-Severe Weather	Non-Seve	re Weather		
Incident Type		No Incident	-				
Proportion of CAVs in Traffic Stream			0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000				
Demand Adjustment Factor (DAF)		1.000	1.000				
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-			
Final Capacity Adjustment Factor (CAF))		1.000	1.000			
Demand and Capacity							
Demand Volume (Vi), veh/h			3604				
Peak Hour Factor (PHF)			0.95				
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966			
Flow Rate (vi), pc/h			4023	2071			
Capacity (cmd), pc/h			7200	4000			
Initial Adjusted Capacity (cmda), pc/h			7200	-			
Final Adjusted Capacity (cmda), pc/h			7200	4000			
Volume-to-Capacity Ratio (v/c)			0.56	0.52			
Speed and Density							
Upstream Equilibrium Distance (LEQ), f	ť	-	Flow Outer Lanes (vOA), pc/h	ı/ln	1074		
Downstream Equilibrium Distance (LEQ	2), ft	-	Off-Ramp Influence Area Sp	eed (SR), mi/h	54.9		
Flow in Lanes 1 and 2 (v12), pc/h		2949	Outer Lanes Freeway Speed	(S0), mi/h	82.4		
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	-	Ramp Junction Speed (S), mi	i/h	60.3		
Number of Outer Lanes on Freeway (N	lo), In	1	Average Density (D), pc/mi/ln 22.2				
Level of Service (LOS)		В	Density in Ramp Influence A	rea (DR), pc/mi/ln	16.1		

	HCS Basic Fre	eeway Report	
Project Information			
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	5095	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFcav	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1703	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	950
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.40
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.3
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	12.6
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Merge Report			
Project Information						
Segment Number 4			Segment Name	SR 951 EB	On Ramp	
Analysis Period Number 1			Segment Analysis Period	07:00-07:15		
Geometric Data						
			Freeway	Ramp		
Number of Lanes (N), In			2	1		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Acceleration Leng	gth (LA), ft	t	1500	1260		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane	
Adjustment Factors			•			
Driver Population			All Familiar	All Familia	r	
Weather Type		Non-Severe Weather	Non-Sever	e Weather		
Incident Type		No Incident	-			
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)			1.000	1.000		
Capacity Adjustment Factor for CAVs, C	CAFCAV		1.000	-		
Final Capacity Adjustment Factor (CAF))		1.000	1.000		
Demand and Capacity				•		
Demand Volume (Vi), veh/h			1703 436			
Peak Hour Factor (PHF)			0.95	0.95		
Total Trucks, %			6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966		
Flow Rate (vi), pc/h			1901	475		
Capacity (cmd), pc/h			4800	2000		
Adjusted Capacity (cmda), pc/h			4800	2000		
Volume-to-Capacity Ratio (v/c)			0.50	0.24		
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	t -	-	Flow Outer Lanes (vOA), pc/h/ln		-	
Downstream Equilibrium Distance (LEQ)), ft -	-	On-Ramp Influence Area Speed (S	SR), mi/h	66.2	
Flow in Lanes 1 and 2 (v12), pc/h		1901	Outer Lanes Freeway Speed (SO),	mi/h	75.4	
Flow Entering Ramp-Infl. Area (vR12), p	oc/h 2	2376	Ramp Junction Speed (S), mi/h		66.2	
Number of Outer Lanes on Freeway (N	IO), In (0	Average Density (D), pc/mi/ln		17.9	
Level of Service (LOS)	E	3	Density in Ramp Influence Area (E	DR), pc/mi/ln	16.0	

	HCS Basic F	reeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp to Everglades Blvd EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43780	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2139	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1194
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	15.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

RFP Alternative_EB.xuf

Pi F	HF R	fŀ F	R	(pc) Freeway	/h) Ramp	(pc, Freeway	/h) Ramp	Ra F	R	F	R Infl.		/mi/ln) R Infl.	
Pł	HF	f⊦	1 V								i/h)			1
			1\7	Flow	Rate	Segmer Capa		<u> </u>	/c	Sp	eed	D	ensity	LOS
0.	33	0.9	C+0	19					40	7:			12.0	В
	HF 95	fF	IV 043	Flow (pc) 19	/h)		acity d/c Speed c/h) Ratio (mi/h) 800 0.40 75.3			(pc,	msity /mi/ln) 12.6	LOS		
		<i>c</i>	11/	F1 -	Data		nt 3: Ba	-	/a	-				100
0.95	0.95	0.943	0.966	4023	2071	7200	4000	0.56	0.52	60.3	54.9	22.2	16.1	В
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.		R Infl.	
Pł	HF	fŀ	IV	Flow (pc		Capa (pc,	city	d,	/c tio		eed i/h)		ensity /mi/ln)	LOS
						Segmen								
	HF 95		IV 043	Flow (pc) 40	/h)	Capa (pc)	/h)	Ra	/c tio 56	(m	eed i/h) 4.0	Density (pc/mi/ln) 18.1		LO: C
						Segme	nt 1: Ba	sic				_		_
ity Se	egme	nt Da	ta											
	Bas	-	+	Basic		I-75 From		On Rai			43780		2	
-	Mer	ge		Merge			51 EB On F 951 EB On	•			1500		2	
	Bas			Basic		I-75 From S	R 951 EB (Off Ram	p to SR		5095		2	
+	Dive		Diverge			95	51 EB Off F 951 EB Off	Ramp	אכיטיקו	-	1500			
-	Cod Bas			Analyze Basic	d	I-75 From C	Name	Dn Dam	n to CD	_	ength, ft	t	Lanes	
ity Se	_	nt Da	τα									. 1		
· Lengtł				12.38										
	Period	S		1			Analysi	s Perioc	l Duratio	on, min	1	5		
		pacity D	rop, %	7			_	egment			5			
ensity, p	y, pc/mi/ln 190.0						Density	at Cap	acity, po	:/mi/ln	4	5.0		
ity Gl	lobal	Input	;											
t Descri	iption			RFP Alte	ernative_E	B Direction o	of Travel							
[,] Name				I-75 Ma	inline		Units				U	.S. Custom	ary	
ction				D1	D1				Time Analyzed Pt				ur	
у				_			Analysi	nalysis Year 2				045		
t				Pevida I	- lighway [Designers	Date	Date 1				11/28/2022		
ect In	form	ation												
					HCS F	reeway	Facilit	ies R	epor	t				
2 C1	t In	t Inform	t Information	t Information				· · · · ·	· · · · ·		HCS Freeway Facilities Report t Information			

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

				Segment	5: Ba	asic					
AP	PHF	fHV	Flow Rate (pc/h)	Capacit (pc/h)		d/c Ratio	Speed (mi/h			Density (pc/mi/ln)	
1	0.95	0.943	2388	4800	0 0.50 74.9				15.9		В
Fac	ility Analys	is Results									
AP	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay Co \$/AP	st	Speed mi/h	Density pc/mi/ln		ensity TT n/mi/ln mi		LOS
1	7948	7519	2.21	55.35		73.9	16.5	15	.6	10.10	В
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	73.9		Average Density, veh/mi/ln 15.6						
Aver	age Travel Time	, min	10.10		Average Density, pc/mi/ln 16.5						
Total	VMT, veh-mi		7948		Total VHD, veh-h 2.21						
Vehi	cle Value of Tim	e (VOT), \$/h	25.00		Total D	elay Cost, \$		55.3	35		

Copyright © 2023 University of Florida. All Rights Reserved.

HCSTM Freeways Version 2023 RFP Alternative_EB.xuf

Generated: 01/31/2023 12:52:16

Project Information					
Analyst	Pevida Highway Designers	Date	11/28/2022		
Agency	Pevida Highway Designers Analysis Year				
Jurisdiction	D1	Time Analyzed	PM Peak Hour		
Project Description	RFP Alternative_WB Direction of Travel	Units	U.S. Customary		
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp		
Analysis Period Number	1	Segment Analysis Period	07:00-07:15		
Geometric Data		-			
Number of Lanes (N), In	2	Terrain Type	Level		
Segment Length (L), ft	43840	Percent Grade, %	-		
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-		
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-		
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4		
Right-Side Lateral Clearance, ft	-				
Adjustment Factors	·				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000		
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000		
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000		
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000		
Demand and Capacity					
Demand Volume (V), veh/h	2621	Heavy Vehicle Adjustment Factor (fHV)	0.943		
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1463		
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400		
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400		
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400		
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.61		
Speed and Density					
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.9		
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	20.1		
Total Ramp Density Adjustment	-	Level of Service (LOS)	С		
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4				

	HCS Freeway	⁷ Diverge Report				
Project Information						
Segment Number 2		Segment Name	SR 951 WE	SR 951 WB Off Ramp		
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5		
Geometric Data		·				
		Freeway	Ramp			
Number of Lanes (N), In		2	1			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Deceleration Length	(LD), ft	1500	250			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane		
Adjustment Factors		•				
Driver Population		All Familiar	All Familia	r		
Weather Type		Non-Severe Weather	Non-Sever	re Weather		
Incident Type		No Incident	-			
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAF	CAV	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000	1.000		
Demand and Capacity						
Demand Volume (Vi), veh/h		2621	454	454		
Peak Hour Factor (PHF)		0.95	0.95	0.95		
Total Trucks, %		6.00	3.50	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966			
Flow Rate (vi), pc/h		2926	495			
Capacity (cmd), pc/h		4800	2000			
Initial Adjusted Capacity (cmda), pc/h		4800	-			
Final Adjusted Capacity (cmda), pc/h		4800	2000			
Volume-to-Capacity Ratio (v/c)		0.61	0.25			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-		
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed	(SR), mi/h	59.6		
Flow in Lanes 1 and 2 (v12), pc/h	Outer Lanes Freeway Speed (SO)	Outer Lanes Freeway Speed (SO), mi/h				
Flow Entering Ramp-Infl. Area (vR12), pc/h	Ramp Junction Speed (S), mi/h	Ramp Junction Speed (S), mi/h 59.6				
Number of Outer Lanes on Freeway (NO),	Average Density (D), pc/mi/ln 24.5					
Level of Service (LOS)	С	Density in Ramp Influence Area	(DR), pc/mi/ln	27.2		

HCS Basic Freeway Report								
Project Information								
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	2	Terrain Type	Level					
Segment Length (L), ft	2850	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFcAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	2167	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1210					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.8					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	16.2					
Total Ramp Density Adjustment	-	Level of Service (LOS)	В					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

	HCS Bas	ic Freeway Report				
Project Information						
Segment Number 4	Segment Name	S	SR 951 WB On Ramp Loop			
Analysis Period Number 1	Segment Analysis Period	0	7:00-07:15			
Geometric Data						
		Freeway	Ramp			
Number of Lanes (N), In		3	1			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Acceleration Length (L	A), ft	980	800			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Sid	ded One-Lane		
Adjustment Factors		•				
Driver Population		All Familiar	All Famil	iar		
Weather Type		Non-Severe Weather	Non-Sev	vere Weather		
Incident Type		No Incident	-			
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000			
Demand and Capacity						
Demand Volume (Vi), veh/h		2167	1260			
Peak Hour Factor (PHF)		0.95	0.95			
Total Trucks, %		6.00	3.50	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966			
Flow Rate (vi), pc/h		2419	1373			
Capacity (cmd), pc/h		7200	2000			
Adjusted Capacity (cmda), pc/h		7200	2000			
Volume-to-Capacity Ratio (v/c)		0.53	0.69			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), po	c/h/ln	0		
Downstream Equilibrium Distance (LEQ), ft	On-Ramp Influence Area S	Speed (SR), mi/h	74.5			
Flow in Lanes 1 and 2 (v12), pc/h	Outer Lanes Freeway Spee	Outer Lanes Freeway Speed (SO), mi/h				
Flow Entering Ramp-Infl. Area (vR12), pc/h	Ramp Junction Speed (S),	Ramp Junction Speed (S), mi/h				
Number of Outer Lanes on Freeway (NO), In	Average Density (D), pc/m	Average Density (D), pc/mi/ln 17.0				
Level of Service (LOS)	В	Density in Ramp Influence	Density in Ramp Influence Area (DR), pc/mi/ln 17.0			

	ŀ	ICS Freeway	Merge Report			
Project Information						
Segment Number 5			Segment Name	SR 951 WB On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:15		
Geometric Data						
			Freeway	Ramp		
Number of Lanes (N), In			3	1		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Acceleration Leng	th (LA), ft		1500	1250		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane	
Adjustment Factors			•			
Driver Population			All Familiar	All Familia	r	
Weather Type			Non-Severe Weather	Non-Sever	e Weather	
Incident Type			No Incident	-		
Proportion of CAVs in Traffic Stream			0	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)			1.000	1.000		
Capacity Adjustment Factor for CAVs, C	AFcav		1.000	-		
Final Capacity Adjustment Factor (CAF)			1.000	1.000		
Demand and Capacity			•			
Demand Volume (Vi), veh/h			3427	1159		
Peak Hour Factor (PHF)			0.95	0.95		
Total Trucks, %			6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966		
Flow Rate (vi), pc/h			3825	1263		
Capacity (cmd), pc/h			7200	2000		
Adjusted Capacity (cmda), pc/h			7200	2000		
Volume-to-Capacity Ratio (v/c)			0.71	0.63		
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	-		Flow Outer Lanes (vOA), pc/h/ln		1484	
Downstream Equilibrium Distance (LEQ), ft -			On-Ramp Influence Area Speed (S	SR), mi/h	62.8	
Flow in Lanes 1 and 2 (v12), pc/h 2341			Outer Lanes Freeway Speed (SO),	mi/h	71.9	
Flow Entering Ramp-Infl. Area (vR12), pc/h 3604			Ramp Junction Speed (S), mi/h		65.2	
Number of Outer Lanes on Freeway (No	5), ln 1		Average Density (D), pc/mi/ln 26.0			
Level of Service (LOS)	С		Density in Ramp Influence Area (DR), pc/mi/ln 25.2			

	HCS Basic F	reeway Report		
Project Information				
Segment Number	6	Segment Name	I-75 from SR 951 WB Or Ramp to CR 886 NB Off Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data				
Number of Lanes (N), In	3	Terrain Type	Level	
Segment Length (L), ft	12185	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	4586	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1706	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.71	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	69.7	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	24.5	
Total Ramp Density Adjustment	-	Level of Service (LOS)	С	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

RFP Alternative_WB.xuf

HCS Freeway Facilities Report

АР	PI	łF	fł	łV	Flow (pc)		Capa (pc,			/c tio		eed ni/h)			nsity ni/ln)	LOS
							Segmer	nt 4: Me	erge							
1	0.	95	0.9	943	24		480	-		50	-	4.8		-	5.2	В
АР	PI	łF	fł	łV	Flow (pc		Capa (pc,			/c tio		eed ni/h)			nsity ni/ln)	LOS
							Segme	nt 3: Ba	sic							
1	0.95	0.95	0.943	0.966	2926	495	4800	2000	0.61	0.25	59.6	59.6		4.5	27.2	С
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	i.	F	R Infl.	
АР	PI	łF	fł	łV	Flow (pc		Capa (pc)	city	d,	/c tio		eed ni/h)			nsity ni/ln)	LOS
-	0.		0.5	/J	29		Segmen		<u> </u>	01	/	2.5		20		
AP		HF 95		IV 943	Flow (pc)	/h)	Capa (pc) 480	′h)		/c tio	(m	eed ni/h) 2.9		(pc/r	nsity ni/ln)	LOS
							Segme	nt 1: Ba								
Facil	ity Se	egme	nt Da	ta												
0		Das			Dasic			6 NB Off F				12105				
5	_	Mer Bas	-		Merge Basic		SR 9	951 WB Or		n to CP		1500 12185			3	
4		Mer	-		Basic			WB On R	•	ор		980			3	
3		Bas	sic		Basic		I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop				2850		2			
2		Dive			Diverge			951 WB Of				1500		2		
1		Bas	sic		Basic		I-75 from Ramp to	Everglade: SR 951 W				43840			2	
No.		Cod	ed		Analyze	d		Name			L	ength,	ft		Lanes	
Facil	ity Se	egme	nt Da	ta												
Facility	/ Lengtł	n, mi			11.90											
Total /	Analysis	Period	s		1			Analysi	s Perioc	l Durati	on, min		15			
			pacity D	orop, %	7				egment				6			
	ensity, j		-	•	190.0			Doncity	(at Can	acity, po	/mi/ln		45.0			
-			Input				VD Direction									
	y Name t Descri				I-75 Ma		VB Direction	Units of Travel					U.S. Cus	tomai	У	
Jurisdi					D1				nalyzed				PM Peak			
Agenc	y				Pevida H	Highway I	Designers	Analysi					2045			
Analys	st				Pevida I	lighway I	Designers	Date					11/28/2022			
Proj	ect In	form	ation													
								Facilit								

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

Jouoig		pc 1D. 02	-022/11	01014	01 3-401 D-3	00120000	10									
1	0.95	0.95	0.943	0.966	3792	1373	7200	2000	0.53	0.69	74.5	74.5	17.0) 1	7.0	В
Segment 5: Merge																
АР	Р	HF	fŀ	IV		Flow Rate C (pc/h)				d/c Speed Ratio (mi/h)			Density (pc/mi/ln)		LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	l. F	R	Infl.	
1	0.95	0.95	0.943	0.966	5088	1263	7200	2000	0.71	0.63	65.2	62.8	26.0) 2	5.2	С
							Segme	nt 6: Ba	asic			<u> </u>				
ΑΡ	Р	HF	fŀ	iV	Flow (pc,		Capa (pc,			/c tio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.	.95	0.9	943	51	19	720	00	0.	0.71 69.7		9.7	24.5			С
Faci	lity A	nalysi	is Res	ults												
AP	VM veh-m	-		Deman -mi/AP		HD -h/AP	Total Delay \$/AP		Speed mi/h		Density pc/mi/ln		ensity h/mi/ln	TT min		LOS
1	952	2	8	3909	7	.08	177.01		71.4		21.3		20.1	10.00)	С
Faci	lity O	verall	Resu	lts												
Space	e Mean S	Speed, ı	mi/h		71.4			Averag	je Densi	ty, veh,	′mi/ln		20.1			
Avera	ige Trave	el Time,	min		10.00			Averag	je Densi	ty, pc/r	ni/ln	2	21.3			
Total	VMT, ve	h-mi			9522			Total V	HD, veh	-h		1	7.08			
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$			177.01			
	anvright @ 2022 University of Electeda All Diphete Decemend LCSTM Ecouvery Version 2022															

Copyright © 2023 University of Florida. All Rights Reserved.

HCS T Freeways Version 2023 RFP Alternative_WB.xuf Generated: 01/31/2023 12:55:34

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2045 D/B Traffic Analysis Output Reports

(AM Peak Hour)

HCS Basic Freeway Report

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2045
Jurisdiction	D1	Time Analyzed	AM Peak Hour
Project Description	DB Alternative_EB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		-	
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	13465	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·	• •	
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	4586	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1706
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.71
Speed and Density		-	
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	69.7
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	24.5
Total Ramp Density Adjustment	-	Level of Service (LOS)	С
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Freew	ay Diverge Report				
Project Information						
Segment Number 2		Segment Name	SR 951 EB	SR 951 EB Off Ramp		
Analysis Period Number 1		Segment Analysis Period	07:00-07:	15		
Geometric Data						
		Freeway	Ramp			
Number of Lanes (N), In		3	2			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Deceleration Length	(LD), ft	1500	1500			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Side	ed Two-Lane		
Adjustment Factors		· · ·	· ·			
Driver Population		All Familiar	All Familia	ır		
Weather Type		Non-Severe Weather	Non-Seve	re Weather		
Incident Type		No Incident	-	-		
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAR	CAV	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000	1.000		
Demand and Capacity		·	•			
Demand Volume (Vi), veh/h		4586	2419			
Peak Hour Factor (PHF)		0.95	0.95	0.95		
Total Trucks, %		6.00	3.50	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966			
Flow Rate (vi), pc/h		5119	2636			
Capacity (cmd), pc/h		7200	4000			
Initial Adjusted Capacity (cmda), pc/h		7200	-			
Final Adjusted Capacity (cmda), pc/h		7200	4000			
Volume-to-Capacity Ratio (v/c)		0.71	0.66			
Speed and Density						
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/	In	1366		
Downstream Equilibrium Distance (LEQ), f	Downstream Equilibrium Distance (LEQ), ft -			53.2		
Flow in Lanes 1 and 2 (v12), pc/h	Outer Lanes Freeway Speed (S	Outer Lanes Freeway Speed (SO), mi/h				
Flow Entering Ramp-Infl. Area (vR12), pc/h	Ramp Junction Speed (S), mi/l	Ramp Junction Speed (S), mi/h 58.6				
Number of Outer Lanes on Freeway (NO),	Average Density (D), pc/mi/ln	Average Density (D), pc/mi/ln 29.1				
Level of Service (LOS)	С	Density in Ramp Influence Are	ea (DR), pc/mi/ln	23.0		

	HCS Basic Fr	eeway Report						
Project Information								
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	2	Terrain Type	Level					
Segment Length (L), ft	1840	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	2167	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1210					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.3					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	16.2					
Total Ramp Density Adjustment	-	Level of Service (LOS)	В					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

	HCS Bas	ic Freeway Report				
Project Information						
Segment Number 4	Segment Name	S	R 951 EB On Ramp Loop			
Analysis Period Number 1	Segment Analysis Period	0	7:00-07:15			
Geometric Data			i i i i i i i i i i i i i i i i i i i			
		Freeway	Ramp			
Number of Lanes (N), In		3	1			
Free-Flow Speed (FFS), mi/h		75.4	35.0			
Segment Length (L) / Acceleration Length (L	A), ft	1500	800			
Terrain Type		Level	Level			
Percent Grade, %		-	-			
Segment Type / Ramp Type		Freeway	Right-Sid	ded One-Lane		
Adjustment Factors						
Driver Population		All Familiar	All Famil	iar		
Weather Type		Non-Severe Weather	Non-Sev	Non-Severe Weather		
Incident Type		No Incident	-			
Proportion of CAVs in Traffic Stream		0	-			
Final Speed Adjustment Factor (SAF)		1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000			
Demand and Capacity						
Demand Volume (Vi), veh/h		2167	149			
Peak Hour Factor (PHF)		0.95	0.95			
Total Trucks, %		6.00	3.50	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966			
Flow Rate (vi), pc/h		2419	162			
Capacity (cmd), pc/h		7200	2000			
Adjusted Capacity (cmda), pc/h		7200	2000			
Volume-to-Capacity Ratio (v/c)		0.36	0.08			
Speed and Density		•				
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	Flow Outer Lanes (vOA), pc/h/ln			
Downstream Equilibrium Distance (LEQ), ft 9999.0		On-Ramp Influence Area	On-Ramp Influence Area Speed (SR), mi/h			
Flow in Lanes 1 and 2 (v12), pc/h 0		Outer Lanes Freeway Spe	Outer Lanes Freeway Speed (SO), mi/h			
Flow Entering Ramp-Infl. Area (vR12), pc/h	Ramp Junction Speed (S),	Ramp Junction Speed (S), mi/h 75.3				
Number of Outer Lanes on Freeway (NO), In	Average Density (D), pc/n	Average Density (D), pc/mi/ln 11.4				
Level of Service (LOS)	Density in Ramp Influence	Density in Ramp Influence Area (DR), pc/mi/ln 11.4				

	HCS Basic Fr	eeway Report						
Project Information								
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp Loop to SR 951 EB On Ramp					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	3	Terrain Type	Level					
Segment Length (L), ft	710	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	2316	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	862					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.36					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	11.4					
Total Ramp Density Adjustment	-	Level of Service (LOS)	В					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

		HCS Freeway	Merge Report			
Project Information						
Segment Number 6			Segment Name	SR 951 EB	On Ramp	
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5	
Geometric Data				1		
			Freeway	Ramp		
Number of Lanes (N), In			3	1		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Acceleration Leng	gth (LA), ⁻	ft	1500	1360		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane	
Adjustment Factors			1	1		
Driver Population			All Familiar	All Familia		
Weather Type			Non-Severe Weather	Non-Sever	e Weather	
Incident Type			No Incident	-		
Proportion of CAVs in Traffic Stream			0	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)			1.000	1.000		
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-		
Final Capacity Adjustment Factor (CAF))		.000 1.000			
Demand and Capacity			•			
Demand Volume (Vi), veh/h			2316	405		
Peak Hour Factor (PHF)			0.95	0.95		
Total Trucks, %			6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966		
Flow Rate (vi), pc/h			2585	441		
Capacity (cmd), pc/h			7200	2000		
Adjusted Capacity (cmda), pc/h			7200	2000		
Volume-to-Capacity Ratio (v/c)			0.42	0.22		
Speed and Density			•	-		
Upstream Equilibrium Distance (LEQ), f	t	-	Flow Outer Lanes (vOA), pc/h/ln		993	
Downstream Equilibrium Distance (LEQ	2), ft	-	On-Ramp Influence Area Speed (S	R), mi/h	66.8	
Flow in Lanes 1 and 2 (v12), pc/h		1592	Outer Lanes Freeway Speed (SO), 1	mi/h	73.6	
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	2033	Ramp Junction Speed (S), mi/h		68.9	
Number of Outer Lanes on Freeway (N	IO), In	1	Average Density (D), pc/mi/ln		14.6	
Level of Service (LOS)		В	Density in Ramp Influence Area (D	R), pc/mi/ln	12.7	

HCS Basic Freeway Report						
Project Information						
Segment Number	7	Segment Name	I-75 from SR 951 EB On Ramp to EB Lane Drop			
Analysis Period Number	1	Segment Analysis Period	07:00-07:15			
Geometric Data						
Number of Lanes (N), In	3	Terrain Type	Level			
Segment Length (L), ft	840	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-			
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4			
Right-Side Lateral Clearance, ft	-					
Adjustment Factors						
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000			
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000			
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000			
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000			
Demand and Capacity						
Demand Volume (V), veh/h	2721	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1012			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400			
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400			
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400			
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.42			
Speed and Density						
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.4			
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.4			
Total Ramp Density Adjustment	-	Level of Service (LOS)	В			
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4					

	HCS Basic F	reeway Report					
Project Information							
Segment Number	8	Segment Name	I-75 From EB Lane Drop to Everglades Blvd EB Off Ramp				
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	2	Terrain Type	Level				
Segment Length (L), ft	43985	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	2721	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1518				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.63				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.3				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	21.0				
Total Ramp Density Adjustment	-	Level of Service (LOS)	С				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

DB Alternative_EB.xuf

HCS Freeway Facilities Report

						HCS F	reeway	Facilit	ies R	epor	t						
Proje	ect In	form	ation														
Analys	alyst Pevida Highway Designers				Date				11/	11/28/2022							
Agenc	у				Pevida I	Highway	Designers	Analysi	s Year			204	15				
Jurisdi	ction				D1			Time A	nalyzed			AM	l Peak Hou	r			
Facility	' Name				I-75 Ma	inline		Units				U.S	. Customai	ry			
Project	t Descri	ption			DB Alte	rnative_E	B Direction o	f Travel									
Facil	ity Gl	obal	Input	:													
Jam D	ensity, p	oc/mi/lr	ı		190.0			Density	/ at Cap	acity, po	c/mi/ln	45.	0				
Queue	Discha	rge Ca	bacity D	rop, %	7			Total S	egment	s		8					
Total A	nalysis	Period	5		1			Analysi	s Perioc	d Durati	on, min	15					
Facility	' Length	n, mi			12.38												
Facil	ity Se	gme	nt Da	ta													
No.		Cod	ed		Analyze	d		Name			L	ength, ft		Lanes			
1		Bas	ic		Basic		I-75 From C 9!	R 886 SB (51 EB Off F		ip to SR		13465		3			
2		Dive	rge		Diverge		SR	951 EB Of				1500	3		500		
3		Bas	ic		Basic					1840		2					
4		Mer	ge		Basic		SR 95	1 EB On Ra	amp Loo	ор		1500		3			
5		Bas	ic		Basic		I-75 From SR SR	8 951 EB O 951 EB Or		Loop t	0	710		3			
6		Mer	ge		Merge		SR	951 EB Or	Ramp			1500		3			
7		Bas	ic		Basic		I-75 from S	R 951 EB (Lane Dro		p to EB		840	3				
8		Bas	ic		Basic		I-75 From EE Bl	8 Lane Dro vd EB Off		erglade	5	43985	2				
Facil	ity Se	gme	nt Da	ta													
							Segme	nt 1: Ba	asic								
АР	Pł	łF	fŀ	IV	Flow (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS		
1	0.9	95	0.9	943	51	19	72	00	0.	71	69	9.7	24	4.5	C		
							Segmen	t 2: Div	erge								
АР	Pł	łF	fŀ	١V	Flow (pc,		Capa (pc,	acity d/c Speed					nsity ni/ln)	LO			
	F	R	F	R	Freeway	Ramp	Freeway	· · · · · · · · · · · · · · · · · · ·		R Infl.	F	R Infl.					
1	0.95	0.95	0.943	0.966	5119	2636	7200	4000	0.71	0.66	58.6	53.2	29.1	23.0	C		
							Segme	nt 3: Ba	asic								
АР	Pł	łF	fŀ	łV	Flow (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LO		
1	0.9	95	0.9	943	24	19	480	00	0.	50	74	4.3	16	5.2	В		
							Segmer	nt 4: Me	erge								

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

AP	Pł	HF	fF	iv	Flow (pc/		Capa (pc/						ensity /mi/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2581	162	7200	2000	0.36	0.08	75.3	75.4	11.4	11.4	В
							Segme	nt 5: Ba	asic						
АР	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/			/c tio		eed i/h)		ensity /mi/ln)	LO
1	0.9	95	0.9	43	258	35	720	00	0.	36	75	5.4		11.4	В
							Segmer	t 6: Me	erge						
ΑΡ	Pł	łF	fŀ	iv	Flow (pc/		Capa (pc/		d, Ra	/c tio		eed i/h)		ensity /mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	3026	441	7200	2000	0.42	0.22	68.9	66.8	14.6	12.7	В
							Segme	nt 7: Ba	asic						
АР	Pł	łF	fŀ	iv	Flow (pc,		Capa (pc/			/c tio		eed i/h)		ensity /mi/ln)	LO
1	0.9	95	0.9	43	303	37	720	00	0.4	42	74	1.4		13.4	В
							Segme	nt 8: Ba	asic						
ΑΡ	Pł	łF	fŀ	iV	Flow (pc/		Capa (pc/		d, Ra	/c tio		eed i/h)		ensity /mi/ln)	LO
1	0.9	95	0.9	43	303	37	480	00	0.	63	72	2.3	21.		С
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Demano -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h	Τ	Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	1015	5	ç	610	8	.35	208.72		71.0		21.3	20).1	10.50	С
Faci	lity Ov	veral	Resu	lts											
Space	Mean S	Speed,	mi/h		71.0			Averag	e Densi [.]	ty, veh/	ˈmi/ln	20.	1		
Avera	ge Trave	el Time,	min		10.50			Averag	e Densi [.]	ty, pc/n	ni/In	21.	3		
Total	VMT, vel	h-mi			10155			Total V	HD, veh	-h		8.3	5		
Vehic	e Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		208	208.72		

DB Alternative_EB.xuf

HCS Basic Freeway Report

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2045
Jurisdiction	D1	Time Analyzed	AM Peak Hour
Project Description	DB Alternative_WB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43840	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors		-	
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2059	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1149
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.48
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.1
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	15.3
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

	HCS Freeway	Diverge Report			
Project Information					
Segment Number 2		Segment Name	SR 951 WE	3 Off Ramp	
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5	
Geometric Data		-	·		
		Freeway	Ramp		
Number of Lanes (N), In		2	1		
Free-Flow Speed (FFS), mi/h		75.4	35.0		
Segment Length (L) / Deceleration Length	(LD), ft	1500	250		
Terrain Type		Level	Level		
Percent Grade, %		-	-		
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane	
Adjustment Factors					
Driver Population		All Familiar	All Familia	r	
Weather Type		Non-Severe Weather	Non-Sever	e Weather	
Incident Type		No Incident	-		
Proportion of CAVs in Traffic Stream		0	-		
Final Speed Adjustment Factor (SAF)		1.000	1.000		
Demand Adjustment Factor (DAF)		1.000	1.000		
Capacity Adjustment Factor for CAVs, CAF	CAV	1.000	-		
Final Capacity Adjustment Factor (CAF)		1.000	1.000		
Demand and Capacity					
Demand Volume (Vi), veh/h		2059	356		
Peak Hour Factor (PHF)		0.95	0.95		
Total Trucks, %		6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966		
Flow Rate (vi), pc/h		2298	388		
Capacity (cmd), pc/h		4800	2000		
Initial Adjusted Capacity (cmda), pc/h		4800	-		
Final Adjusted Capacity (cmda), pc/h		4800	2000		
Volume-to-Capacity Ratio (v/c)		0.48	0.19		
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-	
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed (S	SR), mi/h	59.9	
Flow in Lanes 1 and 2 (v12), pc/h	2298	Outer Lanes Freeway Speed (SO), I	mi/h	82.7	
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		59.9	
Number of Outer Lanes on Freeway (NO),	n 0	Average Density (D), pc/mi/ln		19.2	
Level of Service (LOS)	С	Density in Ramp Influence Area (D	R), pc/mi/ln	21.8	

HCS Basic Freeway Report Project Information						
Analysis Period Number	1	Segment Analysis Period	07:00-07:15			
Geometric Data						
Number of Lanes (N), In	2	Terrain Type	Level			
Segment Length (L), ft	1700	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50			
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4			
Right-Side Lateral Clearance, ft	-					
Adjustment Factors						
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000			
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000			
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000			
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000			
Demand and Capacity						
Demand Volume (V), veh/h	1703	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	950			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400			
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400			
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400			
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.40			
Speed and Density						
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.2			
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	12.6			
Total Ramp Density Adjustment	-	Level of Service (LOS)	В			
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4					

	HCS Bas	ic Freeway Report		
Project Information				
Segment Number 4		Segment Name	SF	R 951 WB On Ramp Loop
Analysis Period Number 1		Segment Analysis Period	07	7:00-07:15
Geometric Data			· · ·	
		Freeway	Ramp	
Number of Lanes (N), In		3	1	
Free-Flow Speed (FFS), mi/h		75.4	35.0	
Segment Length (L) / Acceleration Length (L	A), ft	1500	800	
Terrain Type		Level	Level	
Percent Grade, %		-	-	
Segment Type / Ramp Type		Freeway	Right-Sic	led One-Lane
Adjustment Factors		·		
Driver Population		All Familiar	All Famili	ar
Weather Type		Non-Severe Weather	Non-Sev	ere Weather
Incident Type		No Incident	-	
Proportion of CAVs in Traffic Stream		0	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-	
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000	
Demand and Capacity				
Demand Volume (Vi), veh/h		1703	990	
Peak Hour Factor (PHF)		0.95	0.95 0.95	
Total Trucks, %		6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	
Flow Rate (vi), pc/h		1901	1079	
Capacity (cmd), pc/h		7200	2000	
Adjusted Capacity (cmda), pc/h		7200	2000	
Volume-to-Capacity Ratio (v/c)		0.41	0.41 0.54	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	c/h/ln	0
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	75.4
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spee	ed (SO), mi/h	75.0
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	mi/h	75.3
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/m	ni/ln	13.2
Level of Service (LOS)	В	Density in Ramp Influence	e Area (DR), pc/mi/li	n 13.2

HCS Basic Freeway Report Project Information						
Analysis Period Number	1	Segment Analysis Period	07:00-07:15			
Geometric Data						
Number of Lanes (N), In	3	Terrain Type	Level			
Segment Length (L), ft	600	Percent Grade, %	-			
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-			
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50			
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4			
Right-Side Lateral Clearance, ft	-					
Adjustment Factors						
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000			
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000			
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000			
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000			
Demand and Capacity						
Demand Volume (V), veh/h	2693	Heavy Vehicle Adjustment Factor (fHV)	0.943			
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1002			
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400			
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400			
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400			
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.42			
Speed and Density						
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4			
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	13.3			
Total Ramp Density Adjustment	-	Level of Service (LOS)	В			
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4					

		HCS Freeway	Merge Report			
Project Information						
Segment Number 6			Segment Name	SR 951 WE	3 On Ramp	
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5	
Geometric Data			1			
			Freeway	Ramp		
Number of Lanes (N), In			3	1		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Acceleration Leng	gth (LA), ⁻	ft	1500	1260		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane	
Adjustment Factors			•			
Driver Population			All Familiar	All Familia	-	
Weather Type			Non-Severe Weather	Non-Sever	e Weather	
Incident Type			No Incident	-		
Proportion of CAVs in Traffic Stream			0	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)			1.000	1.000		
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-		
Final Capacity Adjustment Factor (CAF))		1.000	1.000		
Demand and Capacity			•			
Demand Volume (Vi), veh/h			2693	911		
Peak Hour Factor (PHF)			0.95	0.95		
Total Trucks, %			6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966		
Flow Rate (vi), pc/h			3006	993		
Capacity (cmd), pc/h			7200	2000		
Adjusted Capacity (cmda), pc/h			7200	2000		
Volume-to-Capacity Ratio (v/c)			0.56	0.50		
Speed and Density			•	-		
Upstream Equilibrium Distance (LEQ), f	't	-	Flow Outer Lanes (vOA), pc/h/ln		1163	
Downstream Equilibrium Distance (LEQ	2), ft	-	On-Ramp Influence Area Speed (S	iR), mi/h	65.4	
Flow in Lanes 1 and 2 (v12), pc/h		1843	Outer Lanes Freeway Speed (SO), 1	mi/h	73.0	
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	2836	Ramp Junction Speed (S), mi/h		67.4	
Number of Outer Lanes on Freeway (N	IO), In	1	Average Density (D), pc/mi/ln		19.8	
Level of Service (LOS)		В	Density in Ramp Influence Area (D	R), pc/mi/ln	19.3	

HCS Basic Freeway Report Project Information							
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	3	Terrain Type	Level				
Segment Length (L), ft	12210	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	3604	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1341				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.56				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.0				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.1				
Total Ramp Density Adjustment	-	Level of Service (LOS)	С				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

DB Alternative_WB.xuf

HCS Freeway Facilities Report

1	0.95	0.95	0.943	0.966	2298	388	4800 Segme	2000	0.48	0.19	59.9	59.9	19.2	21.8	C
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
АР	Pi	łF	fł	IV	Flow (pc,		Capa (pc/	city				eed i/h)		nsity ni/ln)	LOS
1	0.9	95	0.9	43	229	98	480		<u> </u>	48	7:	5.1	1	5.3	В
AP	Pi			IV	Flow (pc,	/h)	Capa (pc/	′h)		/c tio		eed i/h)		nsity ni/ln)	LOS
							Segme	nt 1: Ba	asic						
Facil	lity Se	gme	nt Da	ta					tamp						
7		Bas	-		Basic		I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp				12210		3		
6		Mer	qe	-	Merge	-		951 WB C		p		1500		3	
5		Bas	-		Basic		I-75 from SR 951 WB On Ramp Loop to SR 951 WB On Ramp				600		3		
4		Mer	qe		Basic		951 WB On Ramp Loop SR 951 WB On Ramp Loop				1500		3		
3		Bas			Basic		SR 951 WB Off Ramp I-75 from SR 951 WB Off Ramp to SR				1700		2		
2		Dive	rae		Diverge		Ramp to	SR 951 W	'B Off R			15010		2	
No.		Cod Bas			Analyze Basic	u	I-75 from	Name Everglade		VB Off		ength, ft 43840		Lanes 2	
	lity Se	-		ta	Analyza			News				awath ft		Lanas	
	y Lengtł				11.90										
	Analysis		5		1			Analysi	s Perioc	l Durati	on, min	15			
Queue	e Discha	rge Cap	bacity D	rop, %	7			Total Se	egment	s		7			
Jam D	ensity, p	oc/mi/lr	ı		190.0			Density	v at Cap	acity, p	c/mi/ln	45.	.0		
Facil	lity Gl	obal	Input	:											
-	t Descri	ption			_		B Direction c							<u>,</u>	
	y Name				I-75 Ma	inline		Units	naiyzeu				S. Customa		
Agenc Jurisdi	-				D1	lighway D	Designers	Analysi	s Year nalyzed			20	45 1 Peak Hou	r	
•	st				_	lighway D		Date					11/28/2022		

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2980	1079	7200	2000	0.41	0.54	75.3	75.4	13.2	13.2	В
							Segme	nt 5: Ba	sic						
АР	Pŀ	łF	fŀ	IV	Flow (pc,		Capa (pc/		-	/c tio		eed i/h)		ensity /mi/ln)	LO
1	0.9	95	0.9	43	300	06	720	00	0.4	42	75	5.4		13.3	В
							Segmen	nt 6: Me	erge						
АР	Pŀ	łF	fŀ	IV	Flow (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		ensity /mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	3999	993	7200	2000	0.56	0.50	67.4	65.4	19.8	19.3	В
							Segme	nt 7: Ba	asic						
АР	P PHF fHV Flow F (pc/			Capacity (pc/h)		d, Ra	/c tio		eed i/h)		ensity /mi/ln)	LO			
1	0.9	95	0.9	43	402	23	7200		0.56 74.0		1.0		18.1	C	
Facil	ity Ar	nalysi	is Res	ults											
AP	VMT veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	7538	3	7	030	1.	.77	44.29		74.1		16.1	15	5.2	9.60	В
Facil	ity O\	/erall	Resu	lts											
Space	Mean S	peed, ı	mi/h		74.1			Averag	e Densit	ty, veh/	ˈmi/ln	15.	2		
Average Travel Time, min 9.60						age Density, pc/mi/ln		16.	16.1						
otal V	/MT, veł	n-mi			7538			Total V	HD, veh	-h		1.7	7		
Total VMT, veh-mi 7538					Total Delay Cost, \$				44.29						

DB Alternative_WB.xuf

I-75/SR 93 at SR 951/Collier Boulevard Interchange

2045 D/B Traffic Analysis Output Reports

(PM Peak Hour)

HCS Basic Freeway Report

Project Information			
Analyst	Pevida Highway Designers	Date	11/28/2022
Agency	Pevida Highway Designers	Analysis Year	2045
Jurisdiction	D1	Time Analyzed	PM Peak Hour
Project Description	DB Alternative_EB Direction of Travel	Units	U.S. Customary
Segment Number	1	Segment Name	I-75 From CR 886 SB On Ramp to SR 951 EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data		-	
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	13465	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	-
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors	·		·
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	3604	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1341
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.56
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.0
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	18.1
Total Ramp Density Adjustment	-	Level of Service (LOS)	С
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway I	Diverge Report			
Project Information						
Segment Number 2			Segment Name	SR 951 EB	Off Ramp	
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5	
Geometric Data			<u> </u>			
			Freeway	Ramp		
Number of Lanes (N), In			3	2		
Free-Flow Speed (FFS), mi/h			75.4	35.0		
Segment Length (L) / Deceleration Len	ngth (LD),	ft	1500	1500		
Terrain Type			Level	Level		
Percent Grade, %			-	-		
Segment Type / Ramp Type			Freeway	Right-Side	ed Two-Lane	
Adjustment Factors						
Driver Population			All Familiar	All Familia	r	
Weather Type			Non-Severe Weather	Non-Seve	ere Weather	
Incident Type			No Incident -			
Proportion of CAVs in Traffic Stream			0	-		
Final Speed Adjustment Factor (SAF)			1.000	1.000		
Demand Adjustment Factor (DAF)		1.000	1.000			
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-		
Final Capacity Adjustment Factor (CAF))		1.000			
Demand and Capacity						
Demand Volume (Vi), veh/h			3604 1901			
Peak Hour Factor (PHF)			0.95 0.95			
Total Trucks, %			6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966		
Flow Rate (vi), pc/h			4023	2071		
Capacity (cmd), pc/h			7200	4000		
Initial Adjusted Capacity (cmda), pc/h			7200	-		
Final Adjusted Capacity (cmda), pc/h	Final Adjusted Capacity (cmda), pc/h			4000		
Volume-to-Capacity Ratio (v/c)			0.56 0.52			
Speed and Density						
Upstream Equilibrium Distance (LEQ), f	ť	-	Flow Outer Lanes (vOA), pc/h	ı/ln	1074	
Downstream Equilibrium Distance (LEQ	2), ft	-	Off-Ramp Influence Area Sp	eed (SR), mi/h	54.9	
Flow in Lanes 1 and 2 (v12), pc/h		2949	Outer Lanes Freeway Speed	(S0), mi/h	82.4	
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	-	Ramp Junction Speed (S), mi	i/h	60.3	
Number of Outer Lanes on Freeway (N	lo), In	1	Average Density (D), pc/mi/l	n	22.2	
Level of Service (LOS)		В	Density in Ramp Influence A	rea (DR), pc/mi/ln	16.1	

HCS Basic Freeway Report							
Project Information							
Segment Number	3	Segment Name	I-75 From SR 951 EB Off Ramp to SR 951 EB On Ramp				
Analysis Period Number	1	Segment Analysis Period	07:00-07:15				
Geometric Data							
Number of Lanes (N), In	2	Terrain Type	Level				
Segment Length (L), ft	1840	Percent Grade, %	-				
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-				
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50				
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4				
Right-Side Lateral Clearance, ft	-						
Adjustment Factors							
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000				
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000				
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000				
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000				
Demand and Capacity							
Demand Volume (V), veh/h	1703	Heavy Vehicle Adjustment Factor (fHV)	0.943				
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	950				
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400				
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400				
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400				
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.40				
Speed and Density							
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.4				
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	12.6				
Total Ramp Density Adjustment	-	Level of Service (LOS)	В				
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4						

	HCS Bas	ic Freeway Report			
Project Information					
Segment Number 4	Segment Name		SR 951 EB On Ramp Loop		
Analysis Period Number 1		Segment Analysis Period	(07:00-07:15	
Geometric Data		i	<u> </u>		
		Freeway	Ramp		
Number of Lanes (N), In		3	1		
Free-Flow Speed (FFS), mi/h		75.4	35.0		
Segment Length (L) / Acceleration Length (L	A), ft	1500	800		
Terrain Type		Level	Level		
Percent Grade, %		-	-		
Segment Type / Ramp Type		Freeway	Right-S	ided One-Lane	
Adjustment Factors		• •			
Driver Population		All Familiar	All Fam	iliar	
Weather Type		Non-Severe Weather	Non-Se	evere Weather	
Incident Type		No Incident	-		
Proportion of CAVs in Traffic Stream		0	-		
Final Speed Adjustment Factor (SAF)	1.000	1.000			
Demand Adjustment Factor (DAF)		1.000	1.000		
Capacity Adjustment Factor for CAVs, CAFCA	1.000	-			
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000		
Demand and Capacity			· · · ·		
Demand Volume (Vi), veh/h		1703	117		
Peak Hour Factor (PHF)		0.95	0.95 0.95		
Total Trucks, %		6.00	3.50		
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966		
Flow Rate (vi), pc/h		1901	127		
Capacity (cmd), pc/h		7200	2000		
Adjusted Capacity (cmda), pc/h		7200	2000		
Volume-to-Capacity Ratio (v/c)	0.28	0.28 0.06			
Speed and Density			·		
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	Flow Outer Lanes (vOA), pc/h/ln		
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	On-Ramp Influence Area Speed (SR), mi/h		
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spe	Outer Lanes Freeway Speed (SO), mi/h		
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S),	, mi/h	75.3	
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/n	ni/ln	9.0	
Level of Service (LOS)	A	Density in Ramp Influence	e Area (DR), pc/mi,	/ln 9.0	

	HCS Basic Fr	eeway Report	
Project Information			
Segment Number	5	Segment Name	I-75 From SR 951 EB On Ramp Loop to SR 951 EB On Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	3	Terrain Type	Level
Segment Length (L), ft	710	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	1820	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	677
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.28
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	75.4
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	9.0
Total Ramp Density Adjustment	-	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

		HCS Freeway	Merge Report		
Project Information					
Segment Number 6			Segment Name	SR 951 EB	On Ramp
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5
Geometric Data					
			Freeway	Ramp	
Number of Lanes (N), In			3	1	
Free-Flow Speed (FFS), mi/h			75.4	35.0	
Segment Length (L) / Acceleration Leng	gth (LA), f	ft	1500	1360	
Terrain Type			Level	Level	
Percent Grade, %			-	-	
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane
Adjustment Factors			•		
Driver Population			All Familiar	All Familia	-
Weather Type			Non-Severe Weather	Non-Sever	e Weather
Incident Type			No Incident	-	
Proportion of CAVs in Traffic Stream			0	-	
Final Speed Adjustment Factor (SAF)			1.000	1.000	
Demand Adjustment Factor (DAF)			1.000	1.000	
Capacity Adjustment Factor for CAVs, C	CAFcav		1.000	-	
Final Capacity Adjustment Factor (CAF))		1.000	1.000	
Demand and Capacity			•		
Demand Volume (Vi), veh/h			1820	319	
Peak Hour Factor (PHF)			0.95	0.95	
Total Trucks, %			6.00	3.50	
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966	
Flow Rate (vi), pc/h			2032	348	
Capacity (cmd), pc/h			7200	2000	
Adjusted Capacity (cmda), pc/h			7200	2000	
Volume-to-Capacity Ratio (v/c)			0.33 0.17		
Speed and Density					
Upstream Equilibrium Distance (LEQ), ft	t	-	Flow Outer Lanes (vOA), pc/h/ln		780
Downstream Equilibrium Distance (LEQ)), ft	-	On-Ramp Influence Area Speed (S	SR), mi/h	67.2
Flow in Lanes 1 and 2 (v12), pc/h		1252	Outer Lanes Freeway Speed (SO),	mi/h	74.4
Flow Entering Ramp-Infl. Area (vR12), p	oc/h	1600	Ramp Junction Speed (S), mi/h		69.4
Number of Outer Lanes on Freeway (N	lo), In	1	Average Density (D), pc/mi/ln		11.4
Level of Service (LOS)		A	Density in Ramp Influence Area (D	DR), pc/mi/ln	9.3

HCS Basic Freeway Report								
Project Information								
Segment Number	7	Segment Name	I-75 from SR 951 EB On Ramp to EB Lane Drop					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	3	Terrain Type	Level					
Segment Length (L), ft	840	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	2139	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	796					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.33					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.5					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	10.6					
Total Ramp Density Adjustment	-	Level of Service (LOS)	A					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

	HCS Basic F	reeway Report	
Project Information			
Segment Number	8	Segment Name	I-75 From EB Lane Drop to Everglades Blvd EB Off Ramp
Analysis Period Number	1	Segment Analysis Period	07:00-07:15
Geometric Data			
Number of Lanes (N), In	2	Terrain Type	Level
Segment Length (L), ft	43985	Percent Grade, %	-
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.00
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4
Right-Side Lateral Clearance, ft	-		
Adjustment Factors			
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000
Demand and Capacity			
Demand Volume (V), veh/h	2139	Heavy Vehicle Adjustment Factor (fHV)	0.943
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1194
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50
Speed and Density			
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.9
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	15.9
Total Ramp Density Adjustment	-	Level of Service (LOS)	В
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4		

DB Alternative_EB.xuf

HCS Freeway Facilities Report

						hcs f	reeway	Facilit	ies R	epor	t												
Proje	ect In	form	ation																				
Analys	t				Pevida H	Highway	Designers	Date				11/	28/2022										
Agenc	y				Pevida I	Highway	Designers Analysis Year					2045											
Jurisdi	ction				D1			Time A	nalyzed			PM	Peak Hou	r									
Facility	Name				I-75 Ma	inline		Units				U.S	. Customai	ry									
Project	t Descri	ption			DB Alte	rnative_E	B Direction o	f Travel															
Facil	acility Global Input																						
Jam De	ensity, p	oc/mi/lr	า		190.0	Density at Capacity, pc/mi/ln 45.0																	
Queue	Discha	rge Ca	oacity D	rop, %	7			Total S	egment	s		8											
Total A	nalysis	Period	5		1			Analysi	s Perioc	l Durati	on, min	15											
Facility	Length	n, mi			12.38																		
Facil	ity Se	gme	nt Da	ta																			
No.		Cod	ed		Analyze	d		Name			L	ength, ft		Lanes									
1		Bas	ic		Basic		I-75 From C 95	R 886 SB 51 EB Off I		ip to SR		13465		3									
2		Dive	rge		Diverge	2	SR	951 EB Of	f Ramp		1500				3								
3		Bas	ic		Basic		I-75 From S 9!	R 951 EB (51 EB On F		p to SR		1840	2										
4		Mer	ge		Basic		SR 95	1 EB On Ra	amp Loo	ор		1500	3										
5		Bas	ic		Basic		I-75 From SR SR	8 951 EB O 951 EB Or		Loop t	0	710		3									
6		Mer	ge		Merge		SR	951 EB Or	Ramp			1500		3									
7		Bas	ic		Basic		I-75 from S	R 951 EB (Lane Dro		p to EB		840		3									
8		Bas	ic		Basic		I-75 From EE Bl	3 Lane Dro vd EB Off		erglade	5	43985		2									
Facil	ity Se	gme	nt Da	ta																			
							Segme	nt 1: Ba	asic														
ΑΡ	Pł	łF	fł	łV	Flow (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS								
1	0.9	95	0.9	943	40	23	72	00	0.	56	74	4.0	18	8.1	C								
							Segmen	t 2: Div	erge														
АР	Pł	łF	fŀ	١V	Flow (pc,		Capa (pc,			/c itio		Speed (mi/h)										nsity ni/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.									
1	0.95	0.95	0.943	0.966	4023	2071	7200	4000	0.56	.56 0.52 60.3 54.9				16.1	В								
							Segment 3: Basic																
АР	Pł	łF	fŀ	łV	Flow (pc,		Capa (pc,			/c tio		Speed (mi/h) (nsity ni/ln)	LO								
1	0.9	95	0.9	943	19	01	480	00	0.	40	74	1.4	12	2.6	В								
			-				Segmer	nt 4: Me	erae				-										

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

AP	Pł	łF	f⊦	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2028	127	7200	2000	2000 0.28 0.06 75.3 7		75.4	9.0	9.0	A	
							Segme	nt 5: Ba	asic						
ΑΡ	Pł	łF	fHV		Flow Rate (pc/h)			Capacity (pc/h)		/c tio	Speed (mi/h)		Density (pc/mi/ln)		LO
1	0.9	95	0.9	43	203	32	720	00	0.	28	75	5.4		9.0	A
							Segmen	t 6: Me	erge						
АР	Pł	łF	f⊦	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	2380	348	7200	2000	0.33	0.17	69.4	67.2	11.4	9.3	A
				Segment 7: Basic						-					
АР	Pł	łF	fHV		Flow Rate (pc/h)		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
1	0.9	95	0.9	43	2388		720	00	0.	33	74	1.5		10.6	A
							Segme	nt 8: Ba	asic						
ΑΡ	Pł	łF	fŀ	IV	Flow (pc/		Capa (pc/		d, Ra			eed i/h)		ensity :/mi/ln)	LO
1	0.9	95	0.9	43	238	38	480	00	0.	50	74	1.9		15.9	В
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Demano -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	7984	4	7	553	2.	.14	53.60		73.9		16.1	15	5.2	10.00	В
Faci	lity O	/erall	Resu	lts											
Space	Mean S	peed, i	mi/h		73.9			Averag	e Densi	ty, veh/	′mi/ln	15.	2		
Avera	ge Trave	l Time,	min		10.00			Averag	e Densi [.]	ty, pc/n	ni/ln	16.	1		
Total	VMT, vel	n-mi			7984			Total V	HD, veh	-h		2.1	4		
Vohic	e Value of Time (VOT), \$/h 25.00							Total Delay Cost, \$ 53.60							

DB Alternative_EB.xuf

HCS Basic Freeway Report

Project Information				
Analyst	Pevida Highway Designers	Date	11/28/2022	
Agency	Pevida Highway Designers	Analysis Year	2045	
Jurisdiction	D1	Time Analyzed	PM Peak Hour	
Project Description	DB Alternative_WB Direction of Travel	Units	U.S. Customary	
Segment Number	1	Segment Name	I-75 from Everglades Blvd WB Off Ramp to SR 951 WB Off Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data		-		
Number of Lanes (N), In	2	Terrain Type	Level	
Segment Length (L), ft	43840	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.00	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors	•	•		
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	2621	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1463	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.61	
Speed and Density			·	
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	72.9	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	20.1	
Total Ramp Density Adjustment	-	Level of Service (LOS)	С	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

	HCS Freeway	⁷ Diverge Report							
Project Information									
Segment Number 2		Segment Name	SR 951 WE	3 Off Ramp					
Analysis Period Number 1		Segment Analysis Period	07:00-07:1	5					
Geometric Data		·							
		Freeway	Ramp						
Number of Lanes (N), In		2	1						
Free-Flow Speed (FFS), mi/h		75.4	35.0						
Segment Length (L) / Deceleration Length	(LD), ft	1500	250						
Terrain Type		Level	Level						
Percent Grade, %		-	-						
Segment Type / Ramp Type		Freeway	Right-Side	d One-Lane					
Adjustment Factors		•							
Driver Population		All Familiar	All Familia	r					
Weather Type		Non-Severe Weather	Non-Sever	re Weather					
Incident Type		No Incident	-						
Proportion of CAVs in Traffic Stream		0	-						
Final Speed Adjustment Factor (SAF)		1.000	1.000						
Demand Adjustment Factor (DAF)		1.000	1.000						
Capacity Adjustment Factor for CAVs, CAF	CAV	1.000	-						
Final Capacity Adjustment Factor (CAF)		1.000	1.000						
Demand and Capacity									
Demand Volume (Vi), veh/h		2621	454						
Peak Hour Factor (PHF)		0.95	0.95						
Total Trucks, %		6.00	3.50						
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966	966					
Flow Rate (vi), pc/h		2926	495						
Capacity (cmd), pc/h		4800	2000						
Initial Adjusted Capacity (cmda), pc/h		4800	-						
Final Adjusted Capacity (cmda), pc/h		4800	2000						
Volume-to-Capacity Ratio (v/c)		0.61	0.25						
Speed and Density									
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		-					
Downstream Equilibrium Distance (LEQ), ft	-	Off-Ramp Influence Area Speed	(SR), mi/h	59.6					
Flow in Lanes 1 and 2 (v12), pc/h	2926	Outer Lanes Freeway Speed (SO)), mi/h	82.7					
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Ramp Junction Speed (S), mi/h		59.6					
Number of Outer Lanes on Freeway (NO),	In 0	Average Density (D), pc/mi/ln 24.5							
Level of Service (LOS)	С	Density in Ramp Influence Area	(DR), pc/mi/ln	27.2					

	HCS Basic Fr	eeway Report		
Project Information				
Segment Number	3	Segment Name	I-75 from SR 951 WB Off Ramp to SR 951 WB On Ramp Loop	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data				
Number of Lanes (N), In	2	Terrain Type	Level	
Segment Length (L), ft	1700	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	2167	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1210	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.50	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.2	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	16.2	
Total Ramp Density Adjustment	-	Level of Service (LOS)	В	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

	HCS Bas	ic Freeway Report					
Project Information							
Segment Number 4		Segment Name	SI	SR 951 WB On Ramp Loop			
Analysis Period Number 1		Segment Analysis Period	0	7:00-07:15			
Geometric Data			· ·				
		Freeway	Ramp				
Number of Lanes (N), In		3	1				
Free-Flow Speed (FFS), mi/h		75.4	35.0				
Segment Length (L) / Acceleration Length (L	A), ft	1500	800				
Terrain Type		Level	Level				
Percent Grade, %		-	-				
Segment Type / Ramp Type		Freeway	Right-Sic	led One-Lane			
Adjustment Factors							
Driver Population		All Familiar	All Famili	ar			
Weather Type		Non-Severe Weather	Non-Sev	ere Weather			
Incident Type		No Incident	No Incident -				
Proportion of CAVs in Traffic Stream		0	-				
Final Speed Adjustment Factor (SAF)		1.000	1.000				
Demand Adjustment Factor (DAF)		1.000	1.000				
Capacity Adjustment Factor for CAVs, CAFCA	V	1.000	-				
Final Capacity Adjustment Factor (CAF)		1.000	1.000 1.000				
Demand and Capacity							
Demand Volume (Vi), veh/h		2167	1260				
Peak Hour Factor (PHF)		0.95	0.95				
Total Trucks, %		6.00	3.50				
Heavy Vehicle Adjustment Factor (fHV)		0.943	0.966				
Flow Rate (vi), pc/h		2419	1373				
Capacity (cmd), pc/h		7200	2000				
Adjusted Capacity (cmda), pc/h		7200	2000				
Volume-to-Capacity Ratio (v/c)		0.53	0.69				
Speed and Density							
Upstream Equilibrium Distance (LEQ), ft	9999.0	Flow Outer Lanes (vOA), p	oc/h/ln	0			
Downstream Equilibrium Distance (LEQ), ft	9999.0	On-Ramp Influence Area	Speed (SR), mi/h	74.5			
Flow in Lanes 1 and 2 (v12), pc/h	0	Outer Lanes Freeway Spe	ed (So), mi/h	75.0			
Flow Entering Ramp-Infl. Area (vR12), pc/h	0	Ramp Junction Speed (S)	Ramp Junction Speed (S), mi/h				
Number of Outer Lanes on Freeway (NO), In	1	Average Density (D), pc/r	Average Density (D), pc/mi/ln 17.0				
Level of Service (LOS)	В	Density in Ramp Influence	e Area (DR), pc/mi/l	n 17.0			

	HCS Basic Fr	eeway Report		
Project Information				
Segment Number	5	Segment Name	I-75 from SR 951 WB On Ramp Loop to SR 951 WB On Ramp	
Analysis Period Number	1	Segment Analysis Period	07:00-07:15	
Geometric Data				
Number of Lanes (N), In	3	Terrain Type	Level	
Segment Length (L), ft	600	Percent Grade, %	-	
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-	
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50	
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4	
Right-Side Lateral Clearance, ft	-			
Adjustment Factors				
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000	
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000	
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000	
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000	
Demand and Capacity				
Demand Volume (V), veh/h	3427	Heavy Vehicle Adjustment Factor (fHV)	0.943	
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1275	
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400	
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400	
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400	
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.53	
Speed and Density				
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	74.5	
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	17.1	
Total Ramp Density Adjustment	-	Level of Service (LOS)	В	
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4			

		HCS Freeway	Merge Report				
Project Information							
Segment Number 6			Segment Name	SR 951 WE	3 On Ramp		
Analysis Period Number 1			Segment Analysis Period	07:00-07:1	5		
Geometric Data							
			Freeway	Ramp			
Number of Lanes (N), In			3	1			
Free-Flow Speed (FFS), mi/h			75.4	35.0			
Segment Length (L) / Acceleration Leng	gth (LA), ft	t	1500	1260			
Terrain Type			Level	Level			
Percent Grade, %			-	-			
Segment Type / Ramp Type			Freeway	Right-Side	d One-Lane		
Adjustment Factors			1	1			
Driver Population			All Familiar	All Familia	r		
Weather Type			Non-Severe Weather	Non-Sever	e Weather		
Incident Type			No Incident	-			
Proportion of CAVs in Traffic Stream		0	-				
Final Speed Adjustment Factor (SAF)		1.000	1.000				
Demand Adjustment Factor (DAF)			1.000	1.000			
Capacity Adjustment Factor for CAVs, C	AFcav		1.000	-			
Final Capacity Adjustment Factor (CAF)			1.000	1.000			
Demand and Capacity			•				
Demand Volume (Vi), veh/h			3427	1159			
Peak Hour Factor (PHF)			0.95	0.95	5		
Total Trucks, %			6.00	3.50			
Heavy Vehicle Adjustment Factor (fHV)			0.943	0.966			
Flow Rate (vi), pc/h			3825	1263			
Capacity (cmd), pc/h			7200	2000			
Adjusted Capacity (cmda), pc/h			7200	2000			
Volume-to-Capacity Ratio (v/c)		0.71	0.63				
Speed and Density		-					
Upstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/h/ln		1480			
Downstream Equilibrium Distance (LEQ)	-	On-Ramp Influence Area Speed (S	R), mi/h	62.8			
Flow in Lanes 1 and 2 (v12), pc/h	2	2345	Outer Lanes Freeway Speed (SO), r	ni/h	71.9		
Flow Entering Ramp-Infl. Area (vR12), pc	:/h 3	3608	Ramp Junction Speed (S), mi/h		65.2		
Number of Outer Lanes on Freeway (No	D), In 1	1	Average Density (D), pc/mi/ln	26.0			
Level of Service (LOS)	(С	Density in Ramp Influence Area (D	R), pc/mi/ln	25.2		

	HCS Basic F	reeway Report						
Project Information								
Segment Number	7	Segment Name	I-75 from SR 951 WB On Ramp to CR 886 NB Off Ramp					
Analysis Period Number	1	Segment Analysis Period	07:00-07:15					
Geometric Data								
Number of Lanes (N), In	3	Terrain Type	Level					
Segment Length (L), ft	12210	Percent Grade, %	-					
Measured or Base Free-Flow Speed	Measured	Grade Length, mi	-					
Base Free-Flow Speed (BFFS), mi/h	-	Total Ramp Density (TRD), ramps/mi	0.50					
Lane Width, ft	-	Free-Flow Speed (FFS), mi/h	75.4					
Right-Side Lateral Clearance, ft	-							
Adjustment Factors								
Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000					
Weather Type	Non-Severe Weather	Demand Adjustment Factor (DAF)	1.000					
Incident Type	No Incident	Final Capacity Adjustment Factor (CAF)	1.000					
Proportion of CAVs in Traffic Stream	0	Capacity Adj. Factor for CAVs, CAFCAV	1.000					
Demand and Capacity								
Demand Volume (V), veh/h	4586	Heavy Vehicle Adjustment Factor (fHV)	0.943					
Peak Hour Factor (PHF)	0.95	Flow Rate (vp), pc/h/ln	1706					
Total Trucks, %	6.00	Capacity (c), pc/h/ln	2400					
Single-Unit Trucks (SUT), %	-	Initial Adjusted Capacity (cadj), pc/h/ln	2400					
Tractor-Trailers (TT), %	-	Final Adjusted Capacity (cadj), pc/h/ln	2400					
Passenger Car Equivalent (ET)	2.00	Volume-to-Capacity Ratio (v/c)	0.71					
Speed and Density								
Lane Width Adjustment (fLW)	-	Average Speed (S), mi/h	69.7					
Right-Side Lateral Clearance Adj. (fRLC)	-	Density (D), pc/mi/ln	24.5					
Total Ramp Density Adjustment	-	Level of Service (LOS)	С					
Adjusted Free-Flow Speed (FFSadj), mi/h	75.4							

DB Alternative_WB.xuf

HCS Freeway Facilities Report

1	0.9	95	0.9	943	24	19	480 Segmer		<u> </u>	50	74	4.2	1	6.2	В	
АР	Pł	łF	fŀ	iv	Flow (pc,		Capa (pc/	city	d	/c itio		eed i/h)		nsity mi/ln)	LOS	
1	0.95	0.95	0.943	0.966	2926	495	4800	2000 0.61 0.25 59.6 5 nt 3: Basic				59.6	24.5	27.2	C	
1	F	R	F	R	Freeway	Ramp	Freeway	Ramp					F	R Infl.	6	
AP	Pł			iv	Flow (pc,	/h)	Capa (pc/	/h)	Ra	/c tio	(m	eed i/h)	(pc/i	nsity mi/ln)	LOS	
							Segmen	nt 2: Diverge								
1	0.9	95	0.9	943	292		480		0.			2.9		0.1	С	
АР	Pł	łF	fł	IV	Flow (pc,		Capa (pc/	city	d	/c tio		eed i/h)		nsity mi/ln)	LO	
							Segme	nt 1: Ba	asic							
Facil	ity Se	gme	nt Da	ta												
7		Bas	ic		Basic		I-75 from SF 88	8 951 WB (6 NB Off F		ip to CR		12210	10 3			
6		Mer	ge		Merge SR 951 WB On Ramp 1500						1500		3			
5		Bas	ic		Basic I-75 from SR 951 WB On Ramp Loop 600 to SR 951 WB On Ramp						600		3			
4		Mer	ge							1500		3				
3		Bas								1700) 2		2			
2	-	Dive	ge		Diverge	Ramp to SR 951 WB Off Ramp Diverge SR 951 WB Off Ramp 1500					1500	0 2				
1		Bas			Basic	ic I-75 from Everglades Blvd WB Off 43840						43840		2		
No.		Cod			Analyze	d		Name				ength, ft		Lanes		
	ity Se		nt Da	ta	11.50											
	Analysis / Length		5		1			Analysi	s Perioc	1 Durati	on, min	15				
	e Discha	<u> </u>		prop, %	7			_	egment			7				
Jam D	ensity, p	oc/mi/lr	ı		190.0			Density	' at Cap	acity, p	c/mi/ln	45	.0			
Facil	ity Gl	obal	Input	:												
Projec	t Descri	ption			DB Alter	native_W	'B Direction c	of Travel								
Facility	/ Name				I-75 Ma	inline		Units				U.:	S. Customa	ry		
Jurisdi	-				D1				nalyzed				PM Peak Hour			
Analys Agenc					_	<u> </u>	Designers Designers	Date Analysi	s Vear				11/28/2022 2045			
A I					De tale I			Data				11	(20,(2022			

DocuSign Envelope ID: 62322AFF-CF37-48F9-AC7D-399728BC3F18

louoigi	F	R	F	R	8F9-AC7D-3	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	3792	1373	7200	2000	0.53	0.69	74.5	74.5	17.0	17.0	В
•	0.00	0.00		0.000	0.01		Segme			0.00					
АР	P PHF fHV		Flow Rate (pc/h)		Capa	Capacity (pc/h)		d/c Ratio		eed i/h)	Density (pc/mi/ln)		LO		
1	0.9	95	0.9	943	382	25	720	00	0.	53	74	1.5		17.1	В
							Segmer	nt 6: Me	erge						
АР	Pł	łF	fŀ	IV	Flow (pc,		Capa (pc/			/c tio		eed i/h)		ensity :/mi/ln)	LO
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.95	0.95	0.943	0.966	5088	1263	7200	2000	0.71	0.63	65.2	62.8	26.0	25.2	С
							Segme	nt 7: Ba	asic						
ΑΡ	Pł	łF	fŀ	iV	Flow (pc/		Capa (pc/			/c tio		eed i/h)		ensity :/mi/ln)	LO
1	0.9	95	0.9	943	51	19	720	00	0.	71	69	9.7		24.5	С
Faci	lity Ar	nalysi	is Res	ults											
AP	VM1 veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		isity mi/ln	TT min	LOS
1	9594	4	8	3947	7.	.12	178.08		71.4		21.3	20	D.1	10.00	С
Faci	lity O	verall	Resu	lts											
Space	e Mean S	Speed, I	mi/h		71.4			Averag	e Densi [.]	ty, veh/	′mi/ln	20.	1		
Avera	ge Trave	el Time,	min		10.00			Averag	e Densi [.]	ty, pc/r	ni/ln	21.	3		
Total	VMT, vel	h-mi			9594			Total V	HD, veh	-h		7.1	2		
Vehic	le Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		178	178.08		
opyrig	ht © 2023	8 Univers	ity of Flo	rida. All R	ights Reserve	d.	HCSTM Freev	vays Version					Generat	ed: 01/31/202	3 13:5

DB Alternative_WB.xuf

Appendix J: Safety Analysis Output Reports

2045 RFP Safety Analysis Output Reports

General Information	Evaluation Site Summary									
Project description: D1 I-75 at SR 951 Interchar	nge IMR Re-evaluation									
	1/24/2023 Area type: Urban									
	freeway segments for Study Period (mi): 1.609									
Last year of analysis: 2045										
Site Description										
Freeway Segments										
Number Lanes Study Period Study Period De	escription									
Length (mi)										
	to STA 263+80 (SR 951 EB On Ramp)									
	51 EB On Ramp) to STA 275+00 (SR 951 WB Off Ramp)									
· · · · · · · · · · · · · · · · · · ·	51 WB Off Ramp) to STA 304+50 (SR 951 WB On Ramp Loop)									
	51 WB On Ramp Loop) to STA 312+25 (SR 951 WB On Ramp)									
	51 WB On Ramp) to STA 314+60 (SR 951 EB Off Ramp)									
	51 EB Off Ramp) to STA 330+00 (END)									
7 0 0.000 o										
8 0 0.000 o										
9 0 0.000 o										
10 0 0.000 o										
11 0 0.000 o										
12 0 0.000 o										
13 0 0.000 o										
14 0 0.000 o										
15 0 0.000 o										
16 0 0.000 o										
17 0 0.000 o										
18 0 0.000 o										
19 0 0.000 o										
20 0 0.000 o										
Ramp Segments										
Number Study Period	Number Study Period									
Description	Description									
1 0	21 0									
2 0	22 0									
3 0	23 0									
4 0	24 0									
5 0	25 0									
6 0	26 0									
7 0	27 0									
8 0	28 0									
9 0	29 0									
10 0	30 0									
11 0	31 0									
12 0	32 0									
13 0	33 0									
14 0	34 0									
15 0	35 0									
16 0	36 0									
17 0	37 0									
18 0	38 0									
19 0	39 0									
20 0	40 0									
Crossroad Ramp Terminals	<u>.</u>									
Number Config. Control Study Period D	escription									
1 0 0 0										
2 0 0 0										
3 0 0 0										
4 0 0 o										
5 0 0 o										
6 0 0 o										

			Out	put Summa	ry				
General Information					.,				
Project description:	D1 I-75 at 9	SR 951 Inte	erchange IMF	Re-evaluat	tion				
Analyst:	PHD			1/24/2023		Area type:		Urban	
First year of analysis:	2022		Date.	1/24/2023		Alea type.		Orban	
Last year of analysis:	2022								
Crash Data Descripti									
		rach data a	vailabla2		No	Eirot voor o	f oroch data	I	
Freeway segments		rash data a					f crash data		
_			a available?		No		f crash data		
Ramp segments		rash data a			No		f crash data		
			a available?		No		f crash data		
Ramp terminals		rash data a			No		f crash data		
		el crash dat	a available?		No	Last year o	f crash data	1:	
Estimated Crash Sta									
Crashes for Entire Fa	acility			Total	Κ	A	В	С	PDO
Estimated number of crashe	es during Study	Period, crash	ies:	454.6	2.4		33.6	116.2	296.
Estimated average crash fre	eq. during Stud	y Period, cras	hes/yr:	18.9	0.1	0.3	1.4	4.8	12.
Crashes by Facility (Component		Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr	ashes:		6	454.6	2.4	6.4	33.6	116.2	296.
Ramp segments, cras			0	0.0	0.0	0.0	0.0	0.0	0.
Crossroad ramp termi	nals, crashe	S:	0	0.0	0.0	0.0	0.0	0.0	0.
Crashes for Entire Fa	acility by Y	ear	Year	Total	K	Α	В	С	PDO
Estimated number of c			2022	18.9	0.1	0.3	1.4	4.8	12.
the Study Period, cras		5	2023	18.9	0.1	0.3	1.4	4.8	12.
, ,			2024	18.9	0.1	0.3	1.4	4.8	12.
			2025	18.9	0.1	0.3	1.4	4.8	12.
			2026	18.9	0.1	0.3	1.4	4.8	12.
			2027	18.9	0.1	0.3	1.4	4.8	12.
			2028	18.9	0.1	0.3	1.4	4.8	12.
			2029	18.9	0.1	0.3	1.4	4.8	12.
			2030	18.9	0.1	0.3	1.4	4.8	12.
			2000	18.9	0.1	0.3	1.4	4.8	12.
			2031	18.9	0.1	0.3	1.4	4.8	12.
			2032	18.9	0.1	0.3	1.4	4.8	12.
			2033		0.1				
			2034	18.9 18.9	0.1	0.3	1.4 1.4	4.8 4.8	12. 12.
			2035		0.1			4.8	12.
				18.9	0.1	0.3	1.4		12.
			2037 2038	18.9	0.1	0.3	1.4 1.4	4.8 4.8	
			2038	18.9	0.1	0.3			12.
				18.9			1.4	4.8	12.
			2040	18.9	0.1	0.3	1.4	4.8	12.
			2041	18.9	0.1	0.3	1.4	4.8	12.
			2042	18.9	0.1	0.3	1.4	4.8	12.
			2043	18.9	0.1	0.3	1.4	4.8	12.
			2044	18.9	0.1	0.3	1.4	4.8	12.
			2045	18.9	0.1	0.3	1.4	4.8	12.
Distribution of Crash	ies for Entil	re ⊢acility			<u>-</u>			(I 6 · · · -	
Crash Type	Crast	n Type Cat	eaorv			er of Crash			
			- J J	Total	K	Α	В	C	PDO
Multiple vehicle	Head-on cr			1.2	0.0	0.0	0.2	0.6	0.
	Right-angle			7.0	0.0		0.7	2.3	3.
	Rear-end c			225.9	1.2		17.1	59.3	145.
	Sideswipe	crashes:		75.9	0.3	0.8	4.2	14.4	56.
	Other multi	ple-vehicle	crashes:	8.1	0.0	0.1	0.7	2.3	4.
	Total mul	tiple-vehicle	e crashes:	318.1	1.6	4.3	22.8	79.0	210.3
Single vehicle	Crashes wi			2.0	0.0		0.0	0.1	1.
v		th fixed obj	ect:	98.0	0.5		7.7	26.8	61.
				44.0	0.0		0.0		40

erdense mar inter exject	0010		110		2010	0110
Crashes with other object:	14.8	0.0	0.1	0.6	2.0	12.1
Crashes with parked vehicle:	2.0	0.0	0.0	0.2	0.5	1.3
Other single-vehicle crashes	19.6	0.2	0.4	2.3	7.8	9.0
Total single-vehicle crashes:	136.5	0.8	2.0	10.7	37.3	85.7
Total crashes:	454.6	2.4	6.4	33.6	116.2	296.0

	Inp	out Workshe	eet for Freeway Segn	nents																			
			1 1	Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8	Segment 9	Segment 10	Segment 11	Segment 12	Segment 13	Segment 14	Segment 15	Segment 16	Segment 17	Segment 18	Segment 19	Segment 20
- Clear	Echo Input Values		k Input Values	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study						
	(View results in Column AV)	(View results	in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period						
	dway Data	1			4	1 4			0	1				T		T	1	1	Î	T	1		·
	through lanes (n):			4	4	4	5	5	6			A 330+00 (ENI											
	egment description: ength (L), mi:			0.356	0.21	0.559	0.147	0.0445	0.292	(SR 951 EB UI	r Ramp) to ST	A 330+00 (ENI)										
Alignment				0.000	0.21	0.000	0.147	0.0440	0.202														
	l Curve Data	1	✓See note				1	-						-		-			1	-			1
	Horizontal curve in segment			No	No	No	No	No	No														
	Curve radius (R ₁), ft:																						
	Length of curve (L _{c1}), mi:																						
	Length of curve in segment	(I) mi:																					
	Horizontal curve in segment																						
-	Curve radius (R ₂), ft:																						
	Length of curve (L _{c2}), mi:																						
	Length of curve in segment																						
	Horizontal curve in segment	?:																					
	Curve radius (R ₃), ft:																						
	Length of curve (L _{c3}), mi:																						
	Length of curve in segment	(L _{c3,seg}), mi:																					
Cross Sec	tion Data																						
Lane width	(W _I), ft:			12	12	12	12	12	12														
Outside she	oulder width (W _s), ft:			10	10	10	10	10	10														
Inside shou	ulder width (W _{is}), ft:			12	12	11.5	12	12	5														
Median wid				80	80	77	69	62	55														
	ips on outside shoulders?:			Yes	Yes	Yes	Yes	Yes	Yes														
	Length of rumble strips for travel in	increasing mile	post direction. mi:	0.356	0.21	0.49	0.147	0.0445	0.292														
	Length of rumble strips for travel in	-		0.356	0.21	0.49	0.147	0.0445	0.292														
Rumble str	ips on inside shoulders?:	Ŭ		Yes	Yes	Yes	Yes	Yes	Yes														
	Length of rumble strips for travel in	increasing mile	post direction, mi:	0.356	0.21	0.49	0.147	0.0445	0.292														
	Length of rumble strips for travel in	decreasing mile	epost direction, mi:	0.356	0.21	0.49	0.147	0.0445	0.292														
	of barrier in median:			None	None	Some	Some	Some	Some														
	Length of barrier (L _{ib,1}), mi:					0.08	0.1195	0.0445	0.047														
	Distance from edge of traveled	way to barrie	r face (W _{off,in,1}), ft:			11.5	12	12	5														
2	Length of barrier (L _{ib,2}), mi:					0.197	0.0795	0.0445	0.292														
	Distance from edge of traveled	way to barrie	r face (W _{off,in,2}), ft:			11.5	12	12	5														
3	Length of barrier (L _{ib,3}), mi:																						
	Distance from edge of traveled	way to barrie	r face (W _{off,in,3}), ft:																				
	Length of barrier (L _{ib,4}), mi:																						
	Distance from edge of traveled	way to barrie	r face (W _{off,in,4}), ft:																				
5	Length of barrier (L _{ib,5}), mi:																						
	Distance from edge of traveled	way to barrie	r face (W _{off,in,5}), ft:																				
Median bar	rrier width (W _{ib}), ft:																						
Nearest dis	stance from edge of traveled	way to barri	er face (W _{near}), ft:																				
Roadside	Data				1	I		I	1														
	width (W _{hc}), ft:			30	30	30	30	30	30														
	of barrier on roadside:			None	None	Some	None	None	None														
	Length of barrier (L _{ob.1}), mi:					0.3096																	
	Distance from edge of travel	led way to b	arrier face (W _{-#}) ft [.]			10																	
	Length of barrier (L _{ob.2}), mi:					0.267																	
		lad was to b	orrior food /\\/ \			10																	
	Distance from edge of travel	ieu way to b	anier iace (w _{off,o,2}), ft:	•		10																	
	Length of barrier (L _{ob,3}), mi:																						
	Distance from edge of travel	led way to b	arrier face (W _{off,o,3}), ft:																				
4	Length of barrier (L _{ob,4}), mi:																						
	Distance from edge of travel	led way to b	arrier face (W " ,) ft																				

Distance from edge of travele Distance from edge of travele Ramp Access Data Travel in Increasing II Entrance Ramp entra Ramp Distance from Length of ra Entrances is Exit Ramp exit i Ramp Distance from Length of ra Length of ra Length of ra Exit side?: Weave Type B weat Length of weat Length of weat Length of ra Entrance Ramp entra Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of wa Length	ngth of barrier (L _{ob,5}), mi:									-				 	_
Distance from edge of travele Distance from edge of travele Ramp Access Data Travel in Increasing I Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of ra Exit side? Weave Type B wea Length of ra Entrance Ramp entra Ramp Distance from Length of ra Length of ra Exit side? Entrance Ramp entra Ramp Distance from Length of ra Exit Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Entrance from Length of ra Exit side? Weave Type B wea Length of ra Exit side? Weave Type B wea Length of w Length of w Length of w Length of w Length of w Length of w															
Distance from edge of travele Distance from edge of travele Ramp Access Data Travel in Increasing I Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of ra Exit side? Weave Type B wea Length of ra Entrance Ramp entra Ramp Distance from Length of ra Length of ra Exit side? Entrance Ramp entra Ramp Distance from Length of ra Exit Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Entrance from Length of ra Exit side? Weave Type B wea Length of ra Exit side? Weave Type B wea Length of w Length of w Length of w Length of w Length of w Length of w	tance from edge of traveled way to barrier face (W _{off.o.5}), ft:														
Distance from edge of travele Ramp Access Data Travel in Increasing II Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of w Length of ra Exit side?: Weave Type B weat Length of ra Entrance Ramp entra Ramp Distance from Length of ra Entrance Ramp entra Ramp Distance from Length of ra Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of ra Exit side?: Exit side?:	e of traveled way to barrier face, increasing milepost (W _{offinc}), ft:														
Ramp Access Data Travel in Increasing II Travel in Increasing II Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Exit Ramp pexit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of w Length of ra Exit side?: Weave Type B weat Length of ra Entrance from Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp	e of traveled way to barrier face, decreasing milepost (W _{off,dec}), ft:														
Travel in Increasing I Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of w Length of w Travel in Decreasing Entrance from Entrance Ramp entra Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B wea Length of w Length of w Length of w Length of w										L					
Entrance Ramp Distance from Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B weat Length of w Length of w Entrance Ramp entra Ramp Distance from Entrance Ramp entra Ramp Distance from Length of ra Length of ra Entrance Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B weat Length of w Length of w	easing Milepost Direction														
Ramp Distance from Length of ra Entrance si Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of m Length of m Length of m Length of ra Exit side?: Meave Distance from Length of ra Entrance si Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of w	mp entrance in segment? (If yes, indicate type.):	No	No	No	Lane Add	S-C Lane	No								
Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Length of ra Length of ra Length of ra Length of ra Weave Type B weat Length of w Length of w Travel in Decreasing Entrance from Entrance Ramp entra Ramp Distance from Length of ra Length of ra Entrance Ramp entra Ramp Distance from Length of ra Length of ra Length of ra Length of ra Length of ra Length of ra Entrance si Exit Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B weat Length of w Length of w	ance from begin milepost to upstream entrance ramp gore (X _{b.ent}), mi:	999	999	999			999								
Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of w Length of w Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Length of ra Entrance Ramp entra Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B weat Length of w Length of w Lengt	ngth of ramp entrance (L _{en,inc}), mi:					0.24									
Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	ngth of ramp entrance in segment (L _{en,seg,inc}), mi:					0.0445									
Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B weave Veave Type B weave Length of weave Tavel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Length of ra Length of ra Entrance from Length of ra Length of ra Entrance si Exit Ramp exit i Ramp exit i Ramp Distance from Length of ra Exit Ramp exit i Ramp exit i Ramp Distance from Length of ra Exit Ramp exit i Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weave Length of weave Length of weave Length of weave Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th Tata only for th		+				Right									
Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of w Length of w Length of w Length of w Tavel in Decreasing Entrance Ramp Distance from Length of ra Length of ra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B wea Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th The second point on the second point p	mp exit in segment? (If yes, indicate type.):	No	S-C Lane	No	No	No	No								
Length of ra Exit side?: Weave Type B weave Length of w Entrance Ramp Distance from Length of ra Entrance si Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Exit side?: Weave Type B weave Length of w	ance from end milepost to downstream exit ramp gore ($X_{e,ext}$), mi:	999	0-0 Lanc	999	999	999	999								
Length of ra Exit side?: Weave Type B weave Length of w Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weave Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	ngth of ramp exit (L _{ex.inc}), mi:	000	0.047	000	000	000	000								
Exit side?: Weave Type B weat Length of w Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Length of ra Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Exit side? Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th The second property of the se	ngth of ramp exit in segment (L _{ex,seg,inc}), mi:	+	0.047												
Weave Type B weat Length of w Length of w Itength of w Travel in Decreasing Entrance Ramp Distance from Length of ra Length of ra Length of ra Length of ra Entrance si Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Exit Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B weat Length of w Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th)		-												 	
Length of w Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th		No	Right	No	No	No	No								
Length of w Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Length of ra Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit stance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th) Freeway Segment Da	be B weave in segment?:	No	No	No	No	No	No								
Travel in Decreasing Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Exit Ramp exit i Ramp Distance from Length of ra Exit Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th) Freeway Segment Da	ngth of weaving section (L _{wev,inc}), mi:														
Entrance Ramp entra Ramp Distance from Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Ramp Distance from Length of ra Exit side? Weave Type B wea Length of w Length of w	ngth of weaving section in segment (L _{wev,seg,inc}), mi:														
Ramp Distance from Length of ra Length of ra Entrance si Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Length of ra Exit side?: Weave Type B weat Length of w Length of w Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th)	reasing Milepost Direction											 			
Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of w Reave Type B wea Length of w Length of w	mp entrance in segment? (If yes, indicate type.):	S-C Lane	No	No	No	No	No								
Length of ra Entrance si Exit Ramp exit i Ramp Distance from Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of w Freeway Segment Da Average daily traffic (A (enter data only for th	ance from end milepost to upstream entrance ramp gore ($X_{e,ent}$), mi:		999	999	999	999	999								
Entrance si Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	ngth of ramp entrance (L _{en,dec}), mi:	0.24													
Exit Ramp exit i Ramp Distance from Length of ra Exit side?: Weave Type B wea Length of w Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	ngth of ramp entrance in segment (L _{en,seg,dec}), mi:	0.24													
Ramp Distance from Length of ra Length of ra Exit side?: Exit side?: Weave Type B wea Length of w Length of w Length of w Length of w Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	trance side?:	Right													
Length of ra Length of ra Exit side?: Weave Type B wea Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	mp exit in segment? (If yes, indicate type.):	No	No	No	No	No	S-C Lane								
Length of ra Exit side?: Weave Type B wea Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	ance from begin milepost to downstream exit ramp gore (X _{b,ext}), mi:	999	999	999	999	999									
Exit side?: Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	ngth of ramp exit (L _{ex,dec}), mi:						0.05								
Exit side?: Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	ngth of ramp exit in segment (L _{ex.seq.dec}), mi:						0.05								
Weave Type B weat Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	. 5						Right								
Length of w Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for th	be B weave in segment?:	No	No	No	No	No	No								
Length of w Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	ngth of weaving section (L _{wev.dec}), mi:														
Traffic Data Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	ngth of weaving section in segment (L _{wev,seg,dec}), mi:														
Proportion of AADT du Freeway Segment Da Average daily traffic (A (enter data only for the	Year														
Freeway Segment Da Average daily traffic (A (enter data only for th	ADT during high-volume hours (P _{hv}):	0.95	0.95	0.95	0.95	0.95	0.95	г		-				 1	
Average daily traffic (A (enter data only for th		0.95	0.95	0.95	0.95	0.95	0.95								
(enter data only for the															
	traffic (AADT _{fs}) by year, veh/d: 2023														
	hly for those years for which 2024														
	2026														
	2027														
	2027 2028														
	2027 2028 2029														
	2027 2028 2029 2030														
	2027 2028 2029 2030 2031														
	2027 2028 2029 2030 2031 2031														
	2027 2028 2029 2030 2031 2031 2032 2033														
	2027 2028 2029 2030 2031 2031														
	2027 2028 2029 2030 2031 2031 2032 2033 2033														
	2027 2028 2029 2030 2031 2032 2033 2034														
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2037 2038														
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038														
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039														
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2034												Image: Constraint of the sector of		
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031														
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031 2032 2033 2034 2035 2036 2037 2038 2040 2041 2042												Image: Constraint of the sector of		
	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031 2032 2033 2034 2035 2036 2037 2038 2040 2041 2042 2043												Image: Constraint of the sector of		
Entrance Ramp Data for	2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045	53000	47500	43000		67000	91000						Image: Constraint of the sector of		

Average daily traffic (AADT _{b,ent}) by year, veh/d: (enter data only for those years for which it is available, leave other years blank)	2022 2023											
(enter data only for those years for which	2023											
it is available, leave other years blank)												
	2024											
	2025											
	2026											
	2027											
	2028											
	2029											
	2030											
	2031											
	2032											
	2033			1	-						 	1
	2034					 		 			 	
	2035					 		 				
	2036											
	2037					 		 			 	
	 2038											
	2039											
	2039 2040											
	2040	<u> </u>			<u> </u>							
	2041	├										
	 2042 2043	<u> </u>			<u> </u>							
	2043	<u> </u>			<u> </u>							
	2044 2045	<u> </u>	12500	11500								
Exit Bonn Data for Traval in Ingradian Milanash Direction			12500	11500								
Exit Ramp Data for Travel in Increasing Milepost Direction	Year											
Average daily traffic (AADT _{e,ext}) by year, veh/d:	2022											
(enter data only for those years for which	2023											
it is available, leave other years blank)	2024											
	2025											
	2026											
	2027											
	2028											
	2029											
	2030											
	2031											
	2032											
	2033											
	2034											
	2035											
	2036											
	2037											
	2038											
	2039											
	2040				1							
	 2041											
	2042											
	 2043											
	 2040											
	 2045	4500	1	1								
Entrance Ramp Data for Travel in Decreasing Milepost Dir.	Year											
Average daily traffic (AADT) by year yeb/d:					1							
Average daily traffic (AADT _{e,ent}) by year, veh/d:	2022	├ ───	1									
(enter data only for those years for which it is available, leave other years blank)	 2023			ļ								
It is available, leave other years blank)	2024											
	 2025				ļ							
	 2026				ļ							
	 2027			L								
	 2028											
	 2029											
	2030											
	2031											
	2032											
	2033											
	2034											
	2035											

		-						_	-				
	2036												1
	2037												1
	2038												(
	2039												
	2040												
	2041												í – – – – – – – – – – – – – – – – – – –
	2042												
	2043												
	2044												í – – – – – – – – – – – – – – – – – – –
	2045	5500											
Exit Ramp Data for Travel in Decreasing Milepost Direction	Year									u.			
Average daily traffic (AADT _{b,ext}) by year, veh/d:	2022												
(enter data only for those years for which	2023												
it is available, leave other years blank)	2024												
	2025												
	2026												
	2027												1
	2028												1
	2029												
	2030												í l
	2031												
	2032												í l
	2033												í l
	2034												í l
	2035												
	2036												
	2037												í l
	2038												
	2039												1
	2040												
	2041												
	2042												
	2043												
	2044												
	2045				24000								
P 1			 •	•									

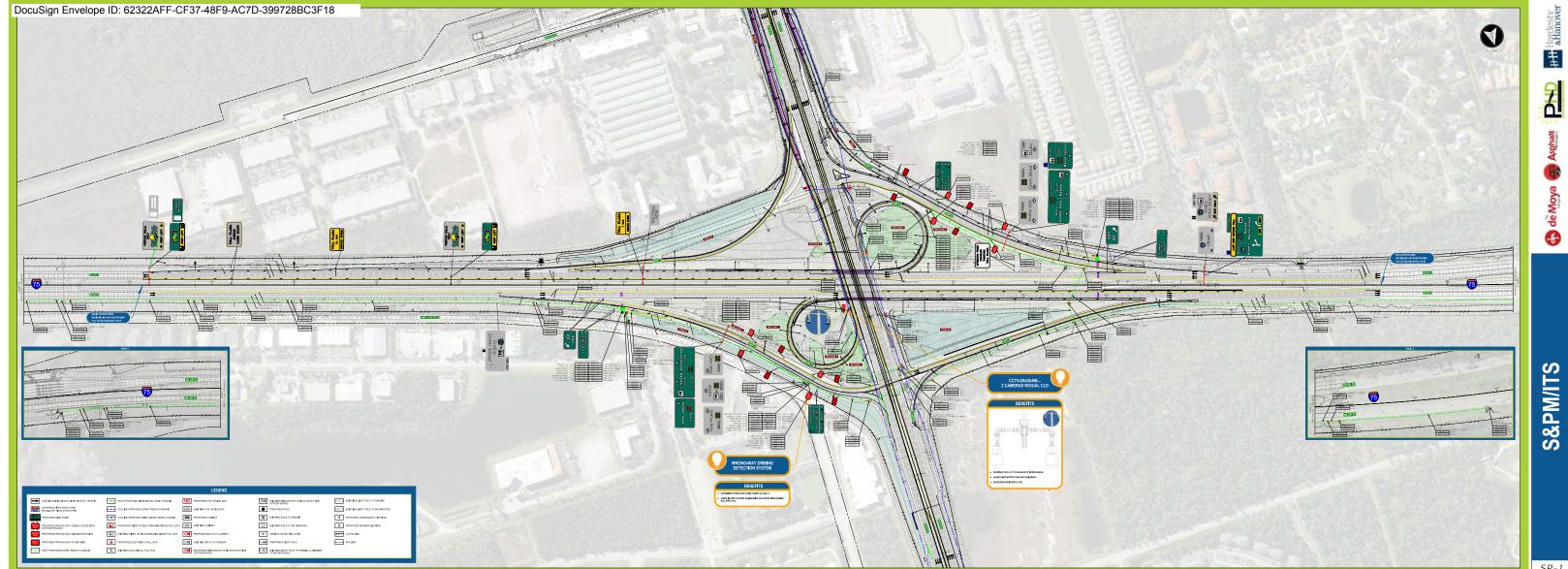
2045 D/B Safety Analysis Output Reports

			Evaluation Site Summary	
General In	formation			
Project des	scription:	D1 I-75 at 3	SR 951 Interchange IMR Re-evaluation	
Analyst:		PHD	Date: 1/24/2023	Area type: Urban
- irst year o	of analysis:	2022	Total length of freeway segments for Study Period (mi):	1.610
ast year o	of analysis:	2045		
Site Descr	-	<u>.</u>		
Freeway S	-			
Number	Lanes	Study Period	Study Period Description	
Number	Lancs	-		
1	4	Length (mi) 0.110		
1			STA 245 (START) to STA 250+80 (I-75 EB Lane Drop)	
2	5		STA 250+80 (I-75 EB Lane Drop) to STA 275+00 (SR 951 EB On & WB Off Ramps)	
3	5		STA 275+00 (SR 951 EB On & WB Off Ramps) to STA 292+00 (SR 951 WB On Ramp Loop)	
4	6		STA 292+00 (SR 951 WB On Ramp Loop) to STA 296+50 (SR 951 EB On Ramp Loop)	
5	5		STA 296+50 (SR 951 EB On Ramp Loop) to STA 313+00 (SR 951 WB On Ramp)	
6	5		STA 313+00 (SR 951 WB On Ramp) to STA 314+75 (SR 951 EB Off Ramp)	
7	6		STA 314+75 (SR 951 EB Off Ramp) to STA 330+00 (END)	
8	0	0.000	0	
9	0	0.000	0	
10	0	0.000	0	
11	0	0.000	0	
12	0		0	
13	0		0	
14	0		0	
15	0		0	
16	0		0	
10	0		0	
18	0		0	
19 20	0	0.000	0	
20	0	0.000	0	
Ramp Seg				
	Study Period	1	Number Study Period	
	Description		Description	
1	0		21 0	
2	0		22 0	
3	0		23 0	
4	0		24 0	
5	0		25 0	
	0		26 0	
_	0		27 0	
	0		28 0	
•	0		29 0	
	0		30 0	
	0			
	0			
_	0		33 0	
	0		34 0	
	0		35 0	
-	0		36 0	
	0		37 0	
_	0		38 0	
_	0		39 0	
20	0		40 o	
Crossroad	d Ramp Terr	ninals		
Number	Config.		Study Period Description	
	0	0	0	
1		0	0	
2	0	0		
	0 0	0	0	
2				
2 3	0	0	0	

			Out	put Summa	ary				
General Information				<u></u>	j				
Project description:	D1 I-75 at 3	SR 951 Inte	rchange IMI	Re-evalua	ation				
Analyst:	PHD			1/24/2023		Area type:		Urban	
First year of analysis:	2022		Duto.	112 112020		/ add type:		orban	
Last year of analysis:	2045								
Crash Data Descripti									
		rach data a	vailabla		No	Lirot voor o	f araab data		
Freeway segments		rash data a			No	,	f crash data		
			a available?		No		f crash data		
Ramp segments		rash data a			No	-	f crash data		
			a available?		No		f crash data		
Ramp terminals	U	rash data a			No	-	f crash data		
		el crash dat	a available?		No	Last year o	f crash data	:	
Estimated Crash Sta	tistics								
Crashes for Entire Fa	acility			Total	K	A	В	С	PDO
Estimated number of crashe	es during Study	/ Period, crash	ies:	470.5	2.4	6.6	34.7	121.0	305.9
Estimated average crash fre				19.6	0.1	0.3	1.4	5.0	12.7
Crashes by Facility (-	-	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr	1		7	470.5	2.4	6.6	34.7	121.0	305.
Ramp segments, cras			0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termin		s:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire Fa			Year	Total	K	A	B	C	PDO
Estimated number of c			2022	19.6	0.1	0.3	1.4	5.0	12.
the Study Period, cras			2023	19.6	0.1	0.3	1.4	5.0	12.
,,,			2024	19.6	0.1	0.3	1.4	5.0	12.
			2025	19.6	0.1	0.3	1.4	5.0	12.
			2026	19.6	0.1	0.3	1.4	5.0	12.
			2027	19.6	0.1	0.3	1.4	5.0	12.
			2028	19.6	0.1	0.3	1.4	5.0	12.
			2029	19.6	0.1	0.3	1.4	5.0	12.
			2020	19.6	0.1	0.3	1.4	5.0	12.
			2030	19.6	0.1	0.3	1.4	5.0	12.
			2032	19.6	0.1	0.3	1.4	5.0	12.
			2033	19.6	0.1	0.3	1.4	5.0	12.
			2034	19.6	0.1	0.3	1.4	5.0	12.
			2035	19.6	0.1	0.3	1.4	5.0	12.
l			2036	19.6	0.1	0.3	1.4	5.0	12.7
			2037	19.6	0.1	0.3	1.4	5.0	12.7
			2038	19.6	0.1	0.3	1.4	5.0	12.
			2039	19.6	0.1	0.3	1.4	5.0	12.
			2040	19.6	0.1	0.3	1.4	5.0	12.
			2041	19.6	0.1	0.3	1.4	5.0	12.
			2042	19.6	0.1	0.3	1.4	5.0	12.
			2043	19.6	0.1	0.3	1.4	5.0	12.
			2044	19.6	0.1	0.3	1.4	5.0	12.
			2045	19.6	0.1	0.3	1.4	5.0	12.
Distribution of Crash	nes for Enti	re Facility							
Crash Type	Cras	h Type Cat	eaorv			er of Crash			
			- 5 - 1 5	Total	K	A	B	C	PDO
Multiple vehicle	Head-on cr			1.3	0.0	0.0	0.2	0.6	0.4
	Right-angle			7.2	0.0	0.1	0.7	2.4	3.
	Rear-end c			233.0	1.2	3.4	17.6	61.6	149.
	Sideswipe			78.1	0.3	0.8	4.3	15.0	57.
		ple-vehicle		8.4	0.0	0.1	0.7	2.4	5.
	Total mu	ltiple-vehicle	e crashes:	328.0	1.7	4.5	23.5	82.0	216.4
Single vehicle	Crashes wi	ith animal:		2.1	0.0	0.0	0.0	0.1	1.9
-	Crashes wi	ith fixed obj	ect:	102.4	0.6	1.5	8.0	28.0	64.2
	- · ·	,				0.4	0.0	0.0	40.4

		•••	•	•.•		• · · =
Crashes with other object:	15.4	0.0	0.1	0.6	2.0	12.6
Crashes with parked vehicle:	2.1	0.0	0.0	0.2	0.6	1.4
Other single-vehicle crashes	20.5	0.2	0.4	2.3	8.2	9.4
Total single-vehicle crashes:	142.5	0.8	2.1	11.2	38.9	89.5
Total crashes:	470.5	2.4	6.6	34.7	121.0	305.9

	Inp	ut Workshe	eet for Freeway Segm	ents																			
				Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8	Segment 9	Segment 10	Segment 11	Segment 12	Segment 13	Segment 14	Segment 15	Segment 16	Segment 17	Segment 18	Segment 19	Segment 20
Clear	Echo Input Values		ck Input Values	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study	Study
	(View results in Column AV)	(View results	in Advisory Messages)	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period	Period
	adway Data	1		4	F		- C			0	-			1	1		1	1	1	-	- 1		
	through lanes (n):			4	5	5	6 STA 292+00	5	5	6			220 - 00 /ENI										
	egment description: ength (L), mi:			0.11	0.458	0.322	0.085	0.313	0.033	0.289	SR 951 EB UI	r Ramp) to STP	A 330+00 (ENL)									
Alignmen				0.11	0.100	U.ULL	0.000	0.010	0.000	0.200	I									I			
	I Curve Data		✓See note						-		-			-		-			1				
	Horizontal curve in segment			No	No	No	No	No	No	No													
	Curve radius (R ₁), ft:																						
	Length of curve (L _{c1}), mi:																						1
-	Length of curve in segment ((I) mi:																					
2																							
2	Horizontal curve in segment Curve radius (R ₂), ft:	<i>!</i> .																					1
	Length of curve (L _{c2}), mi:																						
-	Length of curve in segment (
3	Horizontal curve in segment	?:																					I
	Curve radius (R ₃), ft:																						I
	Length of curve (L _{c3}), mi:																						ı
	Length of curve in segment ((L _{c3,seg}), mi:																					
Cross Sec	ction Data										•									•			
Lane width	n (W _I), ft:			12	12	12	12	12	12	12													1
Outside sh	oulder width (W _s), ft:			10	10	10	10	10	10	10													1
	ulder width (W _{is}), ft:			12	12	12	9	12	12	5													
	dth (W_m), ft:			70	75	75	75	70	60	60													1
	rips on outside shoulders?:			Yes	Yes	Yes	Yes	Yes	Yes	Yes													
	Length of rumble strips for travel in i	increasing mile	nost direction mi	0.11	0.458	0.322	0.0462	0.313	0.033	0.289													1
	Length of rumble strips for travel in o	-	•	0.11	0.458	0.322	0.0462	0.313	0.033	0.289													1
Rumble str	rips on inside shoulders?:	g		Yes	Yes	Yes	Yes	Yes	Yes	Yes													
	Length of rumble strips for travel in i	increasing mile	post direction, mi:	0.11	0.458	0.322	0.0462	0.313	0.033	0.289													1
	Length of rumble strips for travel in o	decreasing mile	epost direction, mi:	0.11	0.458	0.322	0.0462	0.313	0.033	0.289													
-	of barrier in median:			None	None	Some	Some	Some	Some	Some													I
1	Length of barrier (L _{ib,1}), mi:					0.013	0.066	0.0795	0.033	0.045													1
	Distance from edge of traveled	way to barrie	r face (W _{off,in,1}), ft:			12	9	12	12	5													1
2	Length of barrier (L _{ib,2}), mi:						0.064	0.03	0.033	0.289													1
	Distance from edge of traveled	way to barrie	r face (W _{off,in,2}), ft:				9	12	12	5													1
3	Length of barrier (L _{ib,3}), mi:							0.255															1
	Distance from edge of traveled	way to barrie	r face (W _{off,in,3}), ft:					12															1
4	Length of barrier (L _{ib.4}), mi:																						1
	Distance from edge of traveled	way to barrie	r face (W _{off.in.4}), ft:																				1
5	Length of barrier (L _{ib.5}), mi:																						1
	Distance from edge of traveled	wav to barrie	r face (W _{off in 5}), ft:																				
	rrier width (W _{ib}), ft:		(011,11,077																				
	stance from edge of traveled	wav to barri	er face (W _{noor}), ft:																				
Roadside	=	,																	<u> </u>				_
	e width (W _{hc}), ft:			30	30	30	30	30	30	30	<u> </u>						1	1	1	<u> </u>			
	of barrier on roadside:			None	None	Some	Full	Some	None	None													
	Length of barrier (L _{ob.1}), mi:			NOTE	NOTE	0.097	Fuil	0.143	NOTE	NOTE													
1	,	ad west to t	orrior foce (M)					10															
	Distance from edge of travel	eu way to b	arrier race (vv _{off,o,1}), ft:			10																	
2	Length of barrier (L _{ob,2}), mi:					0.097		0.089															
	Distance from edge of travel	ed way to b	arrier face (W _{off,o,2}), ft:			10		10															
3	Length of barrier (L _{ob,3}), mi:																						
	Distance from edge of travel	ed way to b	arrier face (W _{off.o.3}), ft:																				1
	Length of barrier (L _{ob,4}), mi:	,																					
	Distance from edge of travel	ed way to b	arrier face (W) ft.																				
l				1					1	1													


							-										 	_
	Length of barrier (L _{ob,5}), mi:																	
í '	Distance from edge of traveled way to barrier face $(W_{off,o,5})$, ft:																	
Distance from	edge of traveled way to barrier face, increasing milepost (W _{off,inc}), ft:				10													
	edge of traveled way to barrier face, decreasing milepost (Woff,dec), ft:				10													
Ramp Acc	ess Data																	
Travel in I	ncreasing Milepost Direction																	
Entrance	Ramp entrance in segment? (If yes, indicate type.):	No	No	No	Lane Add	No	S-C Lane											
	Distance from begin milepost to upstream entrance ramp gore ($X_{b,ent}$), mi:	999	999	999		999		999										
1 '	Length of ramp entrance (L _{en,inc}), mi:						0.2386											
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:						0.033											
	Entrance side?:				1		Right											
	Ramp exit in segment? (If yes, indicate type.):	No	S-C Lane	No	No	No	No	No										
	Distance from end milepost to downstream exit ramp gore (X _{e.exl}), mi:	999		999	999	999	999	999										
	Length of ramp exit (L _{ex,inc}), mi:		0.047															
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:		0.047		1													
	Exit side?:		Right		+ +					-							-	
	Type B weave in segment?:	No	No	No	No	No	No	No										
	Length of weaving section (L _{wev.inc}), mi:	110																
	Length of weaving section in segment (L _{wev,seg,inc}), mi:																	
	Decreasing Milepost Direction																	
	Ramp entrance in segment? (If yes, indicate type.):	No	S-C Lane	No	Lane Add	No	No	No										
	Distance from end milepost to upstream entrance ramp gore (X _{e,ent}), mi:	999	0.050	999		999	999	999										
	Length of ramp entrance (L _{en,dec}), mi:		0.258															
1 '	Length of ramp entrance in segment (L _{en,seg,dec}), mi:		0.258															
	Entrance side?:		Right															
Exit	Ramp exit in segment? (If yes, indicate type.):	No	No	No	No	No	No	S-C Lane										
	Distance from begin milepost to downstream exit ramp gore $(X_{b,ext})$, mi:	999	999	999	999	999	999											
1 '	Length of ramp exit (L _{ex,dec}), mi:							0.047										
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:							0.047										
	Exit side?:							Right										
Weave	Type B weave in segment?:	No	No	No	No	No	No	No										
	Length of weaving section (L _{wev,dec}), mi:																	
	Length of weaving section in segment (L _{wev,seg,dec}), mi:																	
Traffic Dat	-				<u> </u>													
	of AADT during high-volume hours (P _{hv}):	0.95	0.95	0.95	0.95	0.95	0.95	0.95	1	1	 1	1	<u> </u>		1	1	1	
-		0.00	0.00	0.00	0.00	0.00	0.00	0.00										
	Pegment Data 2022																_	
-	aily traffic (AADT _{fs}) by year, veh/d: 2023																	
	a only for those years for which 2024																	
it is availa	able, leave other years blank) 2025																	
'	2026																	_
'	2027																	
'	2028 2029																	
'	2029																	
'	2030																	
'	2031																	
'	2032																	
'	2034																	
'	2035																	
	2036										1				1			
	2037																	
	2038																	
	2039																	
	2040																	
	2041																	
1	2042																	
ļ																		
	2043																_	_
	2043 2044																	
	2043	53000	53000	44500	57000	55500	67000	91000										

Average daily traffic (AADT _{b,ent}) by year, veh/d:		2022											
(enter data only for those years for which		2023											
it is available, leave other years blank)		2024											
		2025											
		2026											
		2027											
		2028											
		2029											
		2030											
		2031											
		2032											
		2033					1						
		2034										 	
		2035					1						
		2036										 	
		2037											
		2038											
		2039											
		2039											
		2040											
		2041	+										
		2042 2043	+										
		2043	+										
		2044 2045	+	12500	11500								
Exit Roma Data far Traval in Increasing Mileneat Direc				12500	11500								
Exit Ramp Data for Travel in Increasing Milepost Direc	LIION	Year											
Average daily traffic (AADT _{e,ext}) by year, veh/d:		2022											
(enter data only for those years for which		2023											
it is available, leave other years blank)		2024											
		2025											
		2026											
		2027											
		2028											
		2029											
		2030											
		2031											
		2032											
		2033											
		2034											
		2035											
		2036											
		2037											
		2038											
		2038 2039											
		2038 2039											
		2038 2039 2040											
		2038 2039 2040 2041											
		2038 2039 2040 2041 2042											
		2038 2039 2040 2041 2042 2043											
		2038 2039 2040 2041 2042 2043 2044	4500										
Entrance Ramp Data for Travel in Decreasing Milepos	t Dir	2038 2039 2040 2041 2042 2043 2044 2045	4500										
Entrance Ramp Data for Travel in Decreasing Milepos	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year	4500										
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022	4500										
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023	4500						- - - -				
	et Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024	4500										
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025	4500						Image: Constraint of the sector of				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026	4500						Image: Sector				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027	4500						Image: Constraint of the sector of the se				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028	4500						Image: Sector				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	it Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029	4500						Image: Constraint of the sector of the se				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029 2030	4500						Image: Constraint of the sector of the se				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031	4500						Image: Constraint of the sector of the se				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031	4500						Image: Sector				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	4500						Image: Sector				
Average daily traffic (AADT _{e.ent}) by year, veh/d:	t Dir.	2038 2039 2040 2041 2042 2043 2044 2045 Year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031							Image: Sector				

							-					-					
	2036																
	2037																
	2038																
	2039																
	2040																
	2041																
	2042																
	2043																
	2044																
	2045	4000	1500														
Exit Ramp Data for Travel in Decreasing Milepost Direction	Year	Year															
Average daily traffic (AADT _{b,ext}) by year, veh/d:	2022																
(enter data only for those years for which	2023																
it is available, leave other years blank)	2024																
	2025																
	2026																
	2027																
	2028																
	2029																
	2030																
	2031																
	2032																
	2033																
	2034																
	2035																
	2036																
	2037																
	2038																
	2039																
	2040																
	2041																
	2042																
	2043																
	2044																
	2045					24000											
		1 1			1												

Appendix K: Conceptual Signing Plan

SP-1